Home

Radiological Safety Analysis Computer (RSAC) Program Version 7.2 user manual

image

Contents

1. 360900 3 23E 01 1 S BH 1 1 3 2 0 Kr 90 gt Rb 90 1 0 Rb 90m Sr 90 026 Rb 90 370901 2 58 02 1 S 4 28E 01 0 974 1 1 3 0 974 370900 1 58E 02 1 5 6 76 01 1 0 1 4 0 Rb 90 gt Sr 90 1 0 380900 2 88E 01 5 y 2 82E 02 1 3 1 5 8 74 02 Sr 90 gt 90 1 0 390010 1 00E 23 5 y 5 20E 05 1 I I 6 2 pseudo 390020 5 00E 20 5 y 5 00E 07 1 0 1 7 2 pseudo 390901 3 19E 00 3 h 1 25 05 1 0 1 8 0 Y 90m gt Y 90 1 0 390900 6 40E 01 3 h 2 30E 04 1 1 1 9 5 92 01 Y 90 gt stable 420900 5 56E 00 3 h 0 1 0 1 0 1 90 gt 90 1 0 410900 1 46E 01 3 h 0 1 1 1 0 1 Nb 90 gt stable 340910 2 70E 01 1 S 3 22bE 03 1 0 1 0 0 3 Se 91 gt 91 1 0 350910 5 41 01 1 6 3 91 01 1 0 2 1 0 3 91 gt Kr 91 1 0 360910 8 57E 00 1 S 1 0 3 2 0 Kr 91 gt Rb 91 1 0 370910 5 84E 01 1 5 HHH 1 0 1 3 0 Rb 91 gt Sr 91 1 0 380910 9 63 00 3 h 2 29E 01 1 1 1 4 0 Sr 91 Y 91 1 0 390911 4 97E 01 2 m 2 72E 04 1 0 1 5 0 Y 9lm gt Y 91 1 0 390910 5 85E 01 4 d 6 24E 04 1 1 1 6 1 65 01 91 gt stable 340920 2 48E 01 1 5 4 77E 05 I 0 1 0 0 3 5 92 gt 92 1 0 350920 3 43E 01 1 5 1 89 02 1 0 2 1 0 3 Br 92 gt Kr 92 1 0 360920 1 84E 00 1 S HHH 1 0 3 2 0 Kr 92 gt Rb 92 1 0 370920 4 49E 00 1 5 BRE 1 0 1 3 0 Rb 92 gt Sr 92 1 0 380920 2 71E 00 3 h Hid 1 0 1 4 0 Sr 92 gt 92 1 0 390920 3 54 00 3 h 9 81E 03 1
2. 330710 6 53 01 3 h 0 1 0 1 0 1 As 71 gt Ge 71 1 0 320710 1 14E 01 4 d 0 1 1 1 1 1 Ge 71 gt stable 340700 4 11E 01 2 m 0 1 0 1 0 1 Se 70 gt As 70 330700 5 26E 01 2 m 0 1 1 1 0 1 As 70 gt stable 330720 2 60 01 3 h 0 1 1 1 0 1 As 72 gt stable 270720 9 00E 02 1 8 87 07 1 0 1 0 0 3 Co 72 Ni 72 1 0 280720 1 57 00 1 S 2 85E 05 1 0 1 1 0 3 Ni 72 gt Cu 72 1 0 290720 6 63E 00 1 S 3 36E 05 1 0 1 2 0 3 Cu 72 gt Zn 72 1 0 300720 4 65 01 3 h 6 76E 06 1 0 1 3 0 Zn 72 gt Ga 72 1 0 310720 1 41E 01 3 h 4 22E 08 1 1 1 4 0 Ga 72 gt stable 270730 1 16E 01 1 5 9 07 08 1 0 1 0 0 3 Co 73 Ni 73 1 0 280730 8 00E 01 1 5 1 49 05 1 0 1 1 0 3 Ni 73 Cu 73 1 0 290730 3 90E 00 1 S 9 86E 05 1 0 1 2 0 3 Cu 73 gt Zn 73 1 0 300730 2 35E 01 1 S 1 28E 04 1 0 1 3 0 3 Zn 73 gt Ga 73 1 0 310730 4 86E 00 3 h 6 88E 06 1 1 1 4 0 Ga 73 gt stable Se 73m Se 73 726 As 73 340731 3 98 01 2 m 0 0 274 1 1 0 1 274 340730 7 15 00 3 h 0 1 0 1 1 1 73 gt As 73 1 0 330730 8 03 01 4 d 0 1 1 1 2 1 As 73 gt stable 270740 1 08E 01 1 S 7 32 08 1 0 1 0 0 3 Co 74 Ni 74 1 0 280740 5 00E 01 1 S 2 42E 05 1 0 1 1 0 3 Ni 74 gt Cu 74 1 0 290740 1 63 00 1 S 2 3 E 04 1 0 1 2 0 3 Cu 74 gt Zn 74 1 0 300740 9 54 01 1 S 3 62E 04 1 0 1 3 0 3 Zn 74 gt 74 1 0 310740 8 12E 00 2 m 2 19E 05 1 1
3. 721781 3 10 01 5 0 1 1 1 0 1 Hf 178m gt stable 731781 2 36E 00 3 h 0 1 1 1 0 1 Ta 178m gt stable 751780 1 32 01 2 m 0 1 0 1 0 1 Re 178 gt W 178 1 0 741780 2 16E 01 4 d 0 1 0 1 1 1 W 178 gt Ta 178 1 0 731780 9 3 E 00 2 m 0 1 1 1 2 0 3 Ta 178 gt stable 711790 4 59 00 3 0 1 1 1 0 1 Lu 179 gt stable 721791 2 51 01 4 0 1 1 1 0 1 Hf 179m stable 1 0 741790 3 71 01 2 0 1 0 1 0 1 W 179 gt Ta 179 1 0 731790 1 82E 00 5 0 1 1 1 1 1 Ta 179 gt stable 721801 5 50 00 3 h 0 1 1 1 0 1 Hf 180m gt stable 731801 1 20E 15 5 y 0 1 1 1 0 1 Ta 180m gt stable 731800 8 15 00 3 h 0 1 1 1 0 1 Ta 180 gt stable 761800 2 15 01 2 m 0 I 0 1 0 1 180 gt 180 1 0 751800 2 00 2 m 0 I 1 1 1 0 3 180 gt stable 721810 4 24E 01 4 d 0 1 1 1 0 1 Hf 181 gt stable 761810 1 05E 02 2 m 0 1 0 1 0 1 Os 181 gt Re 181 1 0 751810 1 99 01 3 h 0 I 0 1 1 1 Re 181 gt W 181 1 0 741810 1 21E 02 4 d 0 1 1 1 2 1 W 181 gt stable Hf 182m Hf 182 46 Ta 182 721821 6 15E 01 2 m 0 0 54 2 1 0 1 54 721820 9 00E 06 5 0 1 1 1 1 Hf 182 gt Ta 182 1 0 731821 2 64 01 3 0 1 0 1 0 1 182 gt 182 1 0 731820 1 15 02 4 0 1 1 1 3 1 182 gt stable 771820 1 20 01 2 m 0 1 1 1 0 1 Ir 182 gt Os 182 1 0 751823 6 40 01 3 h 0 1 1 1 0 1 Re 182b gt stable 761820 2
4. 461120 2 10 01 3 h 8 99E 04 1 0 1 4 Pd 112 gt Ag 112 1 0 471120 3 13E 00 3 h 1 70E 04 1 1 1 5 Ag 112 gt stable 491120 1 50 01 2 m 0 1 1 1 0 In 112 gt stable 501130 1 15E 02 4 d 0 1 1 1 0 1 Sn 113 Stable 491131 1 66E 00 3 h 0 1 1 1 1 1 In 113m gt stable 421130 1 97E 01 1 5 2 70E 07 1 0 1 0 0 3 Mo 113 gt Tc 113 1 0 431130 1 30E 01 1 S 13E 04 1 0 1 1 0 3 Tc 113 gt Ru 113 1 0 441130 8 00 01 1 S 5 50E 03 1 0 5 2 0 3 Ru 113 gt Rh 113 1 0 451130 2 80 00 1 5 9 75 03 1 0 1 3 0 3 Rh 113 gt Pd 113 1 0 461130 9 30 01 1 S 3 02E 03 0 9 1 1 4 0 3 Pd 113 Ag 113m 1 Ag 113 9 471131 6 87E 01 1 S 1 52 05 1 0 1 5 0 3 Ag 113m gt stable 471130 5 37E 00 3 h 1 52E 05 0 13 0 1 6 0 3 Ag 113 gt stable 481131 1 41E 01 5 y 0 1 1 1 7 1 Cd 113m gt stable 481130 7 70 15 5 0 1 1 1 0 1 Cd 113 gt stable 421140 3 22 01 1 S 1 73 08 1 0 1 0 0 3 Mo 114 gt Tc 114 1 0 431140 1 73 01 1 S 1 63E 05 1 0 1 1 0 3 Tc 114 gt Ru 114 1 0 441140 5 30E 01 1 S 2 04E 03 1 0 5 2 0 3 Ru 114 gt Rh 114 1 0 451140 1 85E 00 1 S 8 64E 03 1 0 1 3 0 3 Rh 114 gt Pd 114 1 0 461140 2 42E 00 2 m 6 39E 03 1 0 1 4 0 3 Pd 114 gt Ag 114 1 0 471140 4 60E 00 1 S 1 67E 04 1 1 1 5 0 Ag 114 gt stable 491141 4 95 01 4 d 0 0 957 0 1 0 1 In 114m gt In 114 0 957 491140 7 19 01 1 S 0 1 1 1 1 1 In 114 gt stable 461150 5 00E 01 1 S 1 51E 02 0 73 0 1 0 0 3 Pd 115 g
5. nennen 2 4 2 4 Software Management and Quality Assurance 2 2 4 244 Configuration tomo eot eds P eme AE edi qasa ne megas 2 5 24 2 Verification and Validation essen en ener enne 2 5 2 44 3 Restrictions or Limitations iere itp mere e eee UE ne ER RR eh en anne nos 2 5 ud rM eee He ex Pee bbs 3 1 Using RSAC 7 iere p Ha REI E REPE Hep EH HE 3 1 3l Mam Wand Ow nire i 3 1 3 1 2 Other Tools Features seo oce eme PU 3 3 BAS Option a a re reti oM t Pei dar fa tmd EE n pt 3 4 3 1 4 Senes Main hes env o ees da owe nea 3 5 SND JAddinp a tel ette 3 7 3 1 6 Editing a Senes isis Gr daret dev eiae e 3 9 Run 3 10 32 967165 c eei eode e P eh nmm d Een tror eu ne ehe dt 3 11 3 2 1000 Series Fission Product Inventory 3 11 3 2 2 2000 Series Direct Radionuclide Input 3 18 2 22 3000 Series Dose Summary DNE 3 21 3 2 4 5000 Series Dispersion Control Input 3 24 3 2 5 6000 Series Radionuclide Inventory Decay and P
6. 651550 5 32E 00 4 d 0 1 1 1 2 1 Tb 155 gt stable 581560 1 16E 00 1 S 9 13E 08 1 0 1 0 0 3 Ce 156 gt Pr 156 1 0 591560 5 10E 01 1 S 5 08E 05 1 0 1 1 0 3 Pr 156 gt Nd 156 1 0 601560 5 47E 00 1 S 3 50E 03 1 0 1 2 0 3 Nd 156 gt Pm 156 1 0 611560 2 67 01 1 S 8 04E 03 1 1 1 3 0 3 Pm 156 gt Sm 156 1 0 630070 2 30E 17 5 y 7 70E 02 1 0 1 0 2 pseudo gt Sm 156 1 0 621560 9 40E 00 3 h 3 34E 03 0 001 0 1 5 0 Sm 156 gt Eu 156 1 0 631560 1 52E 01 4 d 4 54E 05 1 1 1 6 7 38E 02 Eu 156 gt stable 651561 5 00E 00 3 h 0 1 0 1 0 1 Tb 156m gt Tb 156 1 0 651560 5 35E 00 4 d 0 1 1 1 1 1 Tb 156 gt stable 581570 3 62E 01 1 S 2 45E 09 1 0 1 0 0 3 157 gt Pr 157 1 0 591570 6 78E 01 1 S 3 10E 06 1 0 1 1 0 3 Pr 157 gt Nd 157 1 0 601570 4 15E 00 1 S 5 94E 04 1 0 1 2 0 3 Nd 157 gt Pm 157 1 0 611570 1 06E 01 1 5 3 47E 03 1 0 1 3 0 3 Pm 157 gt Sm 157 1 0 621570 4 82E 02 1 S 3 53E 03 0 001 0 1 4 0 3 Sm 157 gt Eu 157 001 631570 1 52 01 3 h 8 12 03 1 1 1 5 4 61 02 Eu 157 gt stable 671570 1 26 01 2 m 0 1 0 1 0 1 Ho 157 gt Dy 157 1 0 661570 8 14E 00 3 0 1 0 1 1 1 Dy 157 gt Tb 157 1 0 651570 7 10 01 5 0 1 1 1 2 1 157 gt stable 591580 2 63 01 1 1 28 07 1 0 1 0 0 3 Pr 158 gt Nd 158 1 0 601580 7 89 00 1 S 6 66E 05 1 0 1 1 0 3 Nd 158 gt Pm 158 1 0 611580 4 80E 00 1 S 1 04E 03 1 0 1 2 0 3 Pm 158 gt Sm 158 1 0 621580 5 30 00 2 2 58E 03 1 0 1 3 0 3 Sm 15
7. 6 1 Appendix A Mathematical 8 22 natn A 2 Appendix B RSAC 7 2 Nuclear Data Library B 2 Appendix C Meteorological Diffusion Parameters C 2 Appendix D ICRP 307 rec reete em ec ri tet re ve egets D 2 FIGURES Figure 2 1 Installation screen acceptance Notice 2 2 Figure 2 2 Verifying RSAC installation 2 2 Figure 2 3 Successful verification screen display 2 3 Figure 3 1 RSAC main ient rere HER HUE EXE RA aasan 3 1 Figure 3 2 Toolbar display miene arenneren e adi A n lO Restat n eei e HORE ERE ERR 3 1 Figure 3 3 Add a Series menu display its eti re ho e e t Rc re ren p edd 3 2 Figure 3 4 File summary display eene te mentre a e EE RU 3 3 Figure 3 5 File information display sesenta 3 3 Figure 3 6 Options Dialog 4 3 4 Hig re 3 7 Series Windows ceca t e RR EET 3 5 Figure 3 8 Navigation H
8. Comment Next gt Figure 3 75 Screen Optional Internal External Organ Selection RSAC 7 3 58 October 2010 Using RSAC 7 2 Screen Optional Element Selection This screen appears only 1f Elements will be listed on a upcoming screen is chosen on screen 2 On this screen see Figure 3 76 select the element using one of the following methods Scroll through the list and click on the desired element type the symbol to quickly select the desired element To unselect an element click it in the list a second time To clear all selected click the Clear Selected button Element Selection Line 7081 X Help Symbol Atomic ElementName Selected 089 actinium Ag 04 silver 013 aluminum 095 americium 018 argon AS 033 arsenic At 085 astatine Au 073 gold Ba 056 barium Be 004 beryllium Bi 083 bismuth Bk 097 berkelium Br 035 bromine C 006 carbon Ca 020 calcium El Clear Selected lt Comment Next gt Figure 3 76 Screen Optional Element Selection RSAC 7 3 59 October 2010 Using RSAC 7 2 3 2 7 9000 Series Cloud Gamma Dose Calculation Screen 2 Cloud Gamma Dose Calculation After the series title screen the cloud gamma does calculation screen appear asking whether calculations are to be made using the finite or semi infinite plume model see Figure 3 77 By checking which calculation should be used the inputs for the exponential decay function wil
9. ilo bos a a 3 39 Figure 3 56 Screen 7 Optional Summation Control sess 3 40 Figure 3 57 Screen 8 Optional Element Summation sess eene 3 41 Figure 3 58 Dose Selection Screens siete 3 42 Figure 3 59 Screen 2 Dose Control Calculation eese nennen 3 43 Figure 3 60 Screen Optional Inhalation Dose Control 3 44 Figure 3 61 Screen 4A Optional Inhalation Parameters Dose Calculation 3 45 Figure 3 62 Screen 5A Optional Clearance Class Entry esses 3 46 Figure 3 63 Mortality Risk Calculation screen eene nnne 3 47 Figure 3 64 Morbidity Risk Calculation screen nn 3 48 Figure 3 65 Screen 6 Optional Resuspension of Activity essere 3 49 Figure 3 66 Screen Optional Ingestion Dose 3 50 Figure 3 67 Screen 4B Optional Ingestion Dose Control 2 124112 000000 0000000000000000000000000000003 3 5 Figure 3 68 Screen 5B Optional Usage Constants Tab sse 3 52 Figure 3 69 Screen 5B Optional Retention Constants Tab 3 53 Figure 3 70 Screen 5B Optional Field F
10. 2 2 14 2 o A 02 A o where o and o are the normal diffusion coefficients and Aoz are the low wind speed corrections and and Ac are the building wake corrections The values for Aoy and Ao calculated as follows 1 o2 9 13 10 n J Pu 1000 u 1000 u 16 o2 6 67 x10 ex is petu 100 u 100 u where x is the distance from the release point to the receptor in meters and U is the wind speed in meters per second It is appropriate to use the slant range distance for x because theses corrections are made only when the release is assumed to be at ground level and the receptor is assumed to be on the axis of the plume The diffusion coefficients corrections that account for enhanced diffusion in the wake have a similar form These corrections are 524 10 f al _ J 0 ex 18 675 1 17 10 A 1 1 exp 4 57 x where A is the smallest representative cross sectional area of the building RSAC 7 2 A 6 October 2010 Mathematical Models An upper limit is placed on gt as a conservative measure This limit is the standard deviation associated with a concentration uniformly distributed across a sector with width equal to the circumference of a circle with radius equal to t
11. 1 0 1 2 0 3 Zr 102 gt Nb 102 1 0 411020 4 30E 00 1 S Bene 1 0 1 3 0 3 Nb 102 gt Mo 102 1 0 421020 1 13E 01 2 m 4 14E 01 1 1 1 4 0 3 Mo 102 gt Tc 102 1 0 431021 4 35E 00 2 m 1 29 03 0 5 0 1 5 0 102 gt Tc 102 5 431020 5 28E 00 1 S 1 29E 03 1 1 1 6 0 Tc 102 gt stable 471020 7 70E 00 2 m 0 1 1 1 0 1 Ag 102 gt stable 451021 3 74E 00 5 y 0 0 05 0 1 0 1 Rh 102m gt Rh 102 0 05 451020 2 07E 02 4 d 0 1 1 1 1 1 Rh 102 gt stable 381030 1 39 01 1 S 4 80E 06 1 0 1 0 0 3 Sr 103 gt 103 1 0 391030 2 30 01 1 5 5 34 03 1 0 1 1 0 3 Y 103 gt Zr 103 1 0 401030 1 30 00 1 5 5 26E 01 1 0 1 2 0 3 Zr 103 gt Nb 103 1 0 411030 1 50 00 1 5 BH 1 0 1 3 0 3 103 gt 103 1 0 421030 6 75E 01 1 5 9 23E 01 I 0 I 4 0 3 Mo 103 gt Tc 103 1 0 431030 5 42E 01 1 5 1 80 02 1 2 1 5 0 3 Tc 103 gt Ru 103 1 0 RSAC 7 2 B 15 October 2010 RSAC 7 2 Nuclear Data Library 471030 6 57E 01 2 m 0 1 0 1 0 1 Ag 103 gt Pd 103 461030 1 70E 01 4 d 0 1 1 1 1 1 Pd 103 gt Stable 441030 3 92E 01 4 d 4 00E 05 0 9006 0 5 8 2 666 Ru 103 gt Rh 103m 9006 451031 5 61 E 01 2 m 1 05E 09 1 1 1 9 0 Rh 103m gt stable 471060 2 40E 01 2 0 1 1 1 0 1 Ag 106 gt stable 471061 8 28E 00 4 d 0 1 1 1 0 1 Ag 106m gt stable 381040 1 93E 01 1 5 8 23 08 1 0 1 0 0 3 Sr 104 gt Y 104 1 0 391040 1 44
12. RSAC 7 2 C 4 October 2010 Meteorological Diffusion Parameters meters _ 10 10 10 10 Distance Downwind meters Figure C 4 o versus distance downwind by stability class Markee RSAC 7 2 C 5 October 2010 Meteorological Diffusion Parameters meters Distance Downwind meters Figure 5 o versus distance downwind by stability class Pasquill Gifford RSAC 7 2 C 6 October 2010 Meteorological Diffusion Parameters C meters Distance Downwind meters Figure C 6 versus distance downwind by stability class Pasquill Gifford RSAC 7 2 C 7 October 2010 Meteorological Diffusion Parameters CLASSIFICATION OF ATMOSPHERIC STABILITY and Meyer 1983 BY VERTICAL TEMPERATURE DIFFERENCE Stability Pasquill Temperature change classification categories Cen a Extremely unstable A AT Az lt 1 9 Moderately unstable B 1 9 lt AT Az lt 1 7 Slightly unstable C 1 7 lt AT Az lt 1 5 Neutral D 1 5 lt AT Az lt 0 5 Slightly stable E 0 5 lt AT Az lt 1 5 Moderately stable F 15 lt AT Az lt 4 0 Extremely stable G 4 0 lt AT Az BY STANDARD DEVIATION OF HORIZONTAL WIND DIRECTION Stability Pasquill ey classification categories deg Extremely unstable og gt 22 5 Moderately unstable B 22 5 gt of 2 11 5 Slightly unstable 17 5 gt z gt 12 5 Neutral D 12 5 gt gt 7 5 Slightly stable E 7 5 gt 0238 Moderately
13. Comment Ingestion Dose Parameters Line 7001 Help Decay Time for exponential decay function seconds If 0 RSAC defaults to program calculated time necessary to give 100 releases is TB Plant mid point of operating life yr Back Comment Next gt Figure 3 66 Screen 3B Optional Ingestion Dose Parameters RSAC 7 3 50 October 2010 Using RSAC 7 2 Screen 4B Optional Ingestion Dose Control This screen appears only if option 4 is chosen for Type of Dose Calculation on screen 2 see Figure 3 67 Use this sequence of screens to choose whether to use default ingestion transfer parameters whether the release is chronic acute or if ingestion parameters are to be user entered the time period crops are exposed to contamination during the growing season when the release is not chronic and the harvest duration period following the end of an acute release period When you select to enter ingestion parameters a series of screens will appear that contain the RSAC 7 2 default ingestion parameters Ingestion Dose Control Line 7004 I Help Ingestion Transfer Parameter ____ Ingestion Calculation Control Program default transfer parameters used Chronic release with program default parameters Program default transfer parameters used r Acute release with program default and printed out parameters Ingestion transfer parameters read from Ingestion parameters will
14. M F M F ICRP 68 Recommended Lung Clearance Classes 2 Element 88 Ra 89 Ac 90 Th 91 92 0 93 94 95 Am 96 Cm 97 Bk 98 99 100 Lung Clearance Classes Allowable Clearance a Default lung clearance classes are underlined F Fast M Medium class and S Slow b Chemical species rather than clearance classes are indicated for hydrogen and carbon c V vapor RSAC 7 2 D 7 Classes M F M S M S M 5 5 M M S M M M M M M October 2010 Lung Clearance Classes ICRP 68 Lung Clearance Classes for Maximum Element Dose Z Element UP Z Element E c dE 1 i HTO 4 Nb M S S 42 F 5 6 c CO CO ORG 43 Tc F M a F M 5 44 Ru M s F 45 Rh F M S Me F M 46 Pd F M S 13 Al F M 47 Ag Mu 5 H Si F M 5 48 Cd M S I P M 49 In F M 5 M v 50 Sn F M 17 51 Sb F M I K F 52 F M 20 M 53 I 21 Sc S 55 Cs F 22 Ti F M S 56 Ba 3 M 57 La F M F 5 58 Ce M 5 25 59 Pr M S 26 Fe F M 60 Nd M S 27 Co M 61 Pm M S 28 Ni M 62 Sm M ao F M 5 63 Eu M MER 5 64 Gd F M 31 M 65 Tb M Xm F M 66 M 33 As M 67 Ho M 34 Se F M 68 Er M 35 Br F M 69 Tm M 37 F 70 Yb M S 38 Sr 5 71 Lu M S S M 5 72 Hf F M 40 Zr M S 73 Ta M S RSAC 7 2 D 8 October 2010 2 Element 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 TI 82 Pb 83 Bi 84 Po 85 At
15. 250 1 0 RSAC 7 2 B 42 October 2010 RSAC 7 2 Nuclear Data Library 982540 6 05E 01 4 d 0 0 0031 0 1 0 1 Cf 254 gt Cm 250 0031 Cm 250 Pu 246 11 Bk 250 962500 9 00 03 5 y 0 0 11 3 1 1 1 14 972500 3 21 00 3 h 0 1 1 1 10 1 Bk 250 gt Cf 250 1 0 992500 8 60 00 3 h 0 1 0 1 0 1 Es 250 gt Cf 250 1 0 982500 1 31 01 5 0 1 4 1 12 1 Cf 250 gt Cm 246 1 0 942460 1 08 01 4 d 0 1 1 1 8 1 Pu 246 gt Am 246 1 0 952461 2 50 01 2 m 0 1 2 1 0 1 Am 246m gt Cm 246 1 0 952460 3 90 01 2 m 0 1 1 1 10 1 Am 246 gt Cm 246 1 0 972460 1 80 00 4 0 1 0 1 0 1 246 gt 246 1 0 962460 4 76E 03 5 y 0 0 9997 0 1 12 1 Cm 246 gt Pu 242 1 0 942420 3 74E 05 5 y 0 1 4 1 13 1 Pu 242 gt U 238 1 0 932380 2 12 00 4 d 0 1 2 1 0 1 238 gt 238 1 0 Cm 238 Am 238 9616 962380 2 40 00 3 h 0 0 9116 0 1 0 1 5 234 952380 9 80E 01 2 m 0 1 0 1 0 1 Am 238 gt Pu 238 1 0 942380 8 77E 01 5 0 1 6 1 22 1 238 gt U 234 1 0 922380 4 47E 09 5 y 0 1 3 1 23 1 U 238 gt 234 1 0 912340 6 70 00 3 0 1 3 1 24 1 234 gt U 234 1 0 942340 8 80 00 3 h 0 1 0 1 0 1 Pu 234 Np 234 94 sk U 230 932340 4 40 00 4 0 1 2 1 0 1 Np 234 gt U 234 1 0 Th 234 gt Pa 234m 998 902340 2 41 01 4 0 0 998 0 1 27 1 5 234 Pa 234m gt U 234 9987 912341 1 16E 00 2 m 0
16. K2T 1 where L is the fraction of the total source volume to be released over the time s Decay times for the leakage rate function used with these constants are entered on lines 6001 7001 8020 and 9000 lines An option 1s provided for the program to automatically calculate the necessary decay times to give a 100 release if only one set of constants is entered K1 gt 0 and K1 gt K2 When these conditions are not met you must directly enter the decay time for the leakage rate function It is important not to decay the radionuclide inventory twice before its release to the atmosphere This can inadvertently occur when the total activity of each radionuclide to be released to the atmosphere over an extended period of time is entered directly into RSAC 7 2 rather than using RSAC 7 2 to calculate the radionuclide inventory When this is the case no additional decay of the activity before release is desired even though the total activity entered may represent a release over an extended period of time RSAC 7 4 12 October 2010 5000 Series 4 2 4 6 Crosswind Distance Lines 5301 You can omit these lines if no crosswind calculations are desired Variable Word Name Entry Description 1 Integer 53XX XX 01 02 etc 2 ELB 1 Crosswind distance m N ELB N 1 Additional values on this and following lines are entered up to a maximum of 15 crosswind distances 4 24 7 Diffusion Control Line 5
17. 00 4 88 00 1 83 00 4 80 00 1 80 00 6 51 00 2 45 00 5 16 00 1 93 00 5 14 00 1 92 00 5 26E 00 1 97 00 5 92E 00 2 21 00 4 68 00 1 75 00 2 15 01 8 06 00 5 05 00 1 89 00 9 52 01 3 56 01 1 000 00 5 Example Runs AIR IMMERSION DOSE CHI Q 1 363 02 m 3 m DOWNWIND DISTANCE 1 00E 02 m PLUME TRAVEL TIME 1 00E 02 s AIR IMMERSION DOSE CHI Q 8 574 04 m 3 m DOWNWIND DISTANCE 5 00E 02 m PLUME TRAVEL TIME 5 00 02 s AIR IMMERSION DOSE CHI Q 2 785E 04 m 3 m DOWNWIND DISTANCE 1 00E 03 m PLUME TRAVEL TIME 1 00E 03 s AIR IMMERSION DOSE CHI Q 2 463E 05 m 3 m DOWNWIND DISTANCE 5 00E 03 m PLUME TRAVEL TIME 5 00E 03 s AIR IMMERSION DOSE CHI Q 9 562 06 m 3 m RSAC 7 5 8 October 2010 DOWNWIND DISTANCE 1 00 04 m AIR IMMERSION EFFECTIVE DOSE ORDERED DOWNWIND DISTANCES M PLUME TRAVEL TIME 1 00E 04 s BY ORGAN rem ORGAN NO 1 00E 02 5 00E 02 1 00 03 Lungs 1 1 08 04 6 43 02 1 93 02 S wall 2 9 69E 03 5 79 02 1 73 02 SI Wall 3 8 87 03 5 30 02 1 59 02 ULI wall 4 9 13 03 5 45 02 1 63 02 LLI Wall 5 8 99E 03 5 37 02 1 61 02 Testes 6 1 07 04 6 41 02 1 92 02 Breast 7 1 22 04 7 26 02 2 17 02 BSurface 8 1 69E 04 1 01 03 3 01 02 R Marrow 9 1 06 04 6 33 02 1 89 02 Thyroid 10 1 10 04 6 60 02 1 98 02 Kidney 11 9 74 03 5 82 02 1 74 02 Liver 12 9 82E 03 5 87 02 1 76 02 5 1 13 9
18. 02 45 01 07 02 39 02 5 10 4 O O0 4 EB ND IL IH rem 00 03 89 00 86 01 06 01 18 01 21 00 76 02 28 01 26 01 08 01 06 01 21 02 02 01 30E 01 22E 01 7 01 67E 01 28 01 11 00 14 00 48 01 20 02 STORED VEGETABLE USAGE FACTOR KG YR 40 01 FRESH VEGETABLE USAGE FACTOR KG YR 10 02 MEAT USAGE FACTOR KG YR 10 02 MILK USAGE FACTOR L YR 60E 01 FRACTION OF STORED VEGETABLES FROM GARDEN 00 00 FRACTION OF FRESH VEGETABLES FROM GARDEN 70E 01 RETENTION FACTOR FOR ACTIVITY ON FORAGE 00E 01 RETENTION FACTOR FOR ACTIVITY ON VEGETABLES 00 00 RETENTION FACTOR FOR IODINES 10E 03 REMOVAL RATE CONSTANT FOR CROPS 1 H 00 01 VEGETABLE EXPOSURE TIME TO PLUME FOR CHRONIC RELEASE D 00 01 FORAGE EXPOSURE TIME TO PLUME FOR CHRONIC RELEASE D 00 00 REMOVAL HALF TIME D 25 02 EFFECTIVE SURFACE SOIL DENSITY KG SQ M 00 01 STORED VEGETABLE HOLDUP TIME AFTER HARVEST D 00 00 FRESH VEGETABLE HOLDUP TIME AFTER HARVEST D 60 01 ANIMALS DAILY FORAGE FEED KG D 00 00 FEED MILK RECEPTOR TRANSFER TIME D 00 01 SLAUGHTER TO CONSUMPTION TIME D 00 01 FRACTION OF YEAR ON PASTURE 30E 01 PASTURE FEED FRACTION 00 01 STORED FEED STORAGE TIME 00 00 VEGETABLE VEGETATION YIELD KG SQ M 80E 01 FORAGE VEGETATION YIELD KG SQ M 90 00 ABSOLUTE HUMIDITY G CU M ANNUAL DOSE ACTIVIT
19. 2 K1 1 Linear constant in leak rate function s 3 2 1 Exponential constant in leak rate function 67 Enter additional sets of two values on this and following lines up to a maximum of 10 sets RSAC 7 4 19 October 2010 6000 4 2 5 4 X Radionuclide Selection Option Line 6021 This line is required only if NCH word 2 entered on the Decay Control Line 6000 1s equal to 1 This line is followed by additional lines described as following Variable Word Name Entry Description 1 NUCL Integer Radionuclide identification number see Series 4000 Radionuclide Data Change Line An alternate entry can be made by replacing NUCL with the element symbol followed by the mass number and metastable state indicator Examples of allowable styles include 5137 Cs 137 Cs 137 Bal37m Ba 137m Ba 137m CS137 CS 137 CS 137 137 BA 137M BA 137M Make additional line entries until all desired radionuclides have been entered into the radionuclide inventory A 6101 or 6999 line must follow last radionuclide identification entered 4 2 5 5 Decay Times Lines 6101 You can omit these lines if decay times have been established using the 5001 lines Variable Word Name Entry Description 1 Integer 61 01 02 etc 2 IUNIT Integer Decay time unit Second 2 Minute 3 Hour 4 Day 5 Year 3 TIME 2 Decay time N TIME N 1 Enter additional values on this and following lines up
20. Example 12 FGR 13 Morbidity Risk Calculation Example 13 Resuspension Calculation Example 14 FGR_ICAP 30 Ingestion Dose Chronic and Acute Release Example 15 Multiple Release Scenarios Calculating Air Immersion Dose Example 16 ICRP 72 Ingestion Calculation Chronic and Acute amp Example 17 Criticality Accident ICRP 72 Inhalation and Ingestion DCFs 4 Example 18 Uranium Fire with Plume lofting Example 19 plutonium Fire with Plume lofting Example 20 Release to Room Inhalation Dose Only Figure 2 3 Successful verification screen display Success Success Success Success Success Success Success Success Success Success Success Success Success Success Success Success Success Success Success Success If the screen shown in Figure 2 3 does not display an error screen will display with a request that the user no longer use the software and to notify the RSAC program point of contact of the problem through the bug reporting system RSAC 7 2 3 October 2010 Installing RSAC 7 2 3 Point of Contact and Issues Reporting A method to report bugs provide suggestions and look for program updates has been imbedded in the Help menu of RSAC 7 2 Click on the Help menu and select website from the drop down menu to be directly linked to the Idaho National Laboratory RSAC website The RSAC website has links to report bugs provide suggestions look up product information and obtain downloads for program updat
21. 0 00000 9 00000 0 00000 9 00000 0 00000 0 00000 95TH PERCENTILE OCCURS IN STABLILTY CLASS E 1 04 m s WINDSPEED THE TABLE CAN BE USED TWO WAYS FIRST ASSUME 100 OF THE RELEASE IS THAT MET STABILITY CLASS FOR EITHER 50th OR 95th PERCENTILE CONDITIONS WHICHEVER IS APPICABLE SECOND CALCULATE A DOSE CONSEQUENCE FOR EACH OF THE CONDITIONS THEN MULTIPLY THE VALUES OF THE TABLE BY THE RESULTS OF THE APPROPRIATE MET STABILITY CLASS PERCENTAGE SUM THE VALUES TO GENERATE A DOSE CONSEQUENCE FOR A 95 JOINT FREQUENCY TABLE THE MOST CONSERVATIVE METHOD IS TO ASSUME 100 OF THE RELEASE AT THE 95 CONDITIONS EITHER WAY CAN BE DIRECTLY INPUT INTO RSAC7 Figure 3 83 Table generated from two points of interest RSAC 7 3 65 October 2010 RSCA 7 Input INTENTIONALLY BLANK RSAC 7 3 66 October 2010 RSCA 7 Input 4 Reading the RSAC 7 2 INPUT File 41 RSAC 7 2 Input A typical RSAC 7 2 input line includes word 1 integer line number word 2 integer word 3 real number 4 92 x 10 word 4 real number 12 2 word 5 real number 0 5 at least 1 blank space before optional terminates data input and initiates a comment on the remainder of the line 5400 1 4 92 3 12 2 5 YOUR COMMENT ON LINE Other variations of this same line include 5400 1 4 92E3 12 2 5 E 1 YOUR COMMENT ON LINE 5400 1 49244 1 22 1 5 1 YOUR COMMENT ON LINE A comma or a blank space can be used as delimiters between entries Each integer or real n
22. 1 1 0 1 La 138 gt stable 591381 2 12 00 3 h 0 1 1 1 0 0 Pr 138m gt stable 601380 5 04E 00 3 h 0 1 0 1 0 1 Nd 138 gt Pr 138 1 0 591380 1 45E 00 2 m 0 1 1 1 1 0 3 Pr 138 gt Stable 511390 1 72 01 1 5 5 87 06 1 0 1 0 0 3 Sb 139 gt Te 139 1 0 521390 4 24E 01 1 S 1 30 02 1 0 1 1 0 3 139 gt 1 139 1 0 531390 2 29 00 1 S 7 23E 01 1 0 2 2 0 1 139 gt Xe 139 1 0 541390 3 97E 01 1 S HHH 1 0 3 3 0 Xe 139 gt Cs 139 1 0 551390 9 27 00 2 HHH 1 0 4 4 0 Cs 139 gt Ba 139 1 0 561390 8 31E 01 2 m 6 71E 02 1 1 1 5 5 52 01 139 stable Nd 139m Nd 139 118 Pr 139 601391 5 50 00 3 h 0 0 882 1 0 1 882 601390 2 97 01 2 m 0 1 0 1 1 1 Nd 139 gt Pr 139 1 0 591390 4 41 E 00 3 h 0 1 0 1 2 1 Pr 139 gt Ce 139 1 0 581390 1 38E 02 4 d 0 1 1 1 3 1 139 gt stable 521400 7 52E 01 1 S 1 21 03 1 0 1 0 0 3 Te 140 gt I 140 1 0 531400 8 60E 01 1 S 2 15E 01 1 0 2 1 0 1 140 gt Xe 140 1 0 541400 1 36 01 1 5 HHH 1 0 3 2 0 Xe 140 gt Cs 140 1 0 551400 6 37E 01 1 S HHH 1 0 4 3 0 Cs 140 gt Ba 140 1 0 561400 1 28E 01 4 d 4 29E 01 1 0 1 4 5 29E 01 Ba 140 gt La 140 1 0 571400 1 68E 00 4 d 6 04E 03 1 1 1 5 2 21 La 140 gt stable RSAC 7 2 B 27 October 2010 RSAC 7 2 Nuclear Data Library 521410 2 36E 01 1 5 4 19 05 1 0 1 0 0 3 Te 141 gt I 141 1 0 531410 4 30E 01 1 S 3 0
23. 1 1 1 1 V 49 gt stable 220510 5 76E 00 2 m 0 1 1 1 0 0 3 Ti 51 gt stable 250510 4 62E 01 2 m 0 1 0 1 0 1 Mn 51 gt Cr 51 1 0 240510 2 77 01 4 0 1 1 1 1 1 Cr 51 gt stable 260520 4 59 01 1 S 0 1 0 1 0 1 52 gt Mn 52m 1 0 250521 2 11 01 2 m 0 0 0175 0 1 1 1 Mn 52m gt Mn 52 0 0175 250520 5 59 00 4 0 1 1 1 2 1 Mn 52 gt stable 250530 3 70 06 5 y 0 1 1 1 0 1 Mn 53 gt stable 250540 3 12E 02 4 d 0 1 1 1 0 1 Mn 54 gt stable 270550 1 75 01 3 h 0 1 0 1 0 1 55 gt Fe 55 1 0 260550 2 74E 00 5 y 0 1 1 1 1 1 Fe 55 stable 250560 2 58E 00 3 h 0 1 1 1 0 1 Mn 56 gt stable 280560 6 08E 00 4 d 0 1 0 1 0 1 Ni 56 gt Co 56 1 0 270560 7 72E 01 4 d 0 1 1 1 1 1 Co 56 gt stable 280570 3 56E 01 3 h 0 1 0 1 0 1 Ni 57 gt Co 57 1 0 270570 2 72E 02 4 d 0 1 1 1 1 1 Co 57 gt stable 270581 9 10E 00 3 h 0 1 0 1 0 1 Co 58m gt Co 58 1 0 270580 7 09 01 4 0 1 1 1 1 1 Co 58 gt stable 260590 4 45 01 4 0 1 1 1 0 1 Fe 59 gt stable RSAC 7 2 B 5 October 2010 RSAC 7 2 Nuclear Data Library 280590 7 60 04 5 y 0 1 1 1 0 1 Ni 59 gt stable 260600 1 50 06 5 y 0 1 0 1 0 1 Fe 60 gt Co 60m 1 0 270601 1 05 01 2 m 0 0 9975 0 1 1 1 Co 60m gt 60 0 9975 270600 5 28E 00 5 0 1 1 1 2 1 Co 60 gt stable 290600 2 37E 01 2 m 0 1 1 1 0 1 60
24. 1 1 5 0 Y 92 gt stable 350930 1 02 01 1 6 4 71 03 1 0 2 0 0 3 Br 93 gt Kr 93 1 0 360930 1 29E 00 1 5 5 00 01 1 0 3 1 0 Kr 93 gt Rb 93 1 0 370930 5 84E 00 1 S Hd 1 0 1 2 0 Rb 93 gt Sr 93 1 0 380930 7 42E 00 2 m HHHHHH 1 0 1 3 0 Sr 93 gt 93 1 0 390930 1 02E 01 3 h 9 81E 02 1 0 1 4 0 Y 93 gt 7 93 1 0 400930 1 53 06 5 y 2 50E 01 1 2 1 5 1 029 Zr 93 gt Nb 93m 1 0 410010 2 00E 23 3 y 1 20E 04 1 1 1 6 2 pseudo 410020 2 00E 20 3 y 4 00E 06 1 0 1 7 2 pseudo RSAC 7 2 B 12 October 2010 RSAC 7 2 Nuclear Data Library 410931 1 61 01 5 y 9 37E 09 1 1 1 8 0 Nb 93m gt stable 420931 6 85E 00 3 h 0 1 2 1 0 1 93 gt 93 1 0 Tc 93m Tc 93 766 Mo 93 430931 4 35 01 2 m 0 0 234 1 0 1 234 430930 2 75 00 3 h 0 1 0 1 0 1 Tc 93 gt 93 1 0 420930 4 00 03 5 y Bin 1 1 1 3 1 Mo 93 gt stable 350940 7 00 02 1 S 3 27E 04 1 0 2 0 0 3 Br 94 gt Kr 94 1 0 360940 2 00E 01 1 5 2 27 01 1 0 3 1 0 3 Kr 94 gt Rb 94 1 0 370940 2 70 00 1 5 Bine 1 0 1 2 0 3 Rb 94 gt Sr 94 1 0 380940 7 53E 01 1 S Bin 1 0 1 3 0 Sr 94 gt 94 1 0 390940 1 87E 01 2 m 3 52E 01 1 1 1 4 0 Y 94 gt Stable 1 0 410941 6 26E 00 2 m 4 38E 07 0 9952 0 1 0 0 Nb 94m gt Nb 94 9952 410940 2 03 04 5 4 35 07 1 1 1 1 1 Nb 94 gt stable 440940 5 18E 01 2 0 1 1 1 0 1 Ru 94 gt Tc 94
25. 1 Ar 39 gt stable 180410 1 10E 02 2 m 0 1 1 3 0 1 41 gt stable 190400 1 25 09 9 y 0 1 1 1 0 1 K 40 gt stable 200410 1 02 05 5 y 0 1 1 1 0 1 41 gt stable 190420 1 24 01 3 h 0 1 1 1 0 1 K 42 gt stable 190430 2 23E 01 3 h 0 1 1 1 0 1 K 43 gt stable 210430 3 89 00 3 0 1 1 1 0 1 Sc 43 gt stable 190440 2 21E 01 2 m 0 1 1 1 0 1 K 44 gt stable 190450 1 78E 01 2 m 0 1 0 1 0 1 K 45 gt Ca 45 1 0 200450 1 63E 02 4 d 0 1 1 1 0 1 Ca 45 gt stable 220440 6 00 01 5 y 0 1 1 1 0 1 Ti 44 gt Sc 44 1 0 210441 5 86E 01 3 h 0 0 9863 0 1 1 1 Sc 44m gt Sc 44 0 9863 RSAC 7 2 B 4 October 2010 RSAC 7 2 Nuclear Data Library 210440 3 97E 00 3 h 0 1 1 1 2 1 Sc 44 gt stable 220450 1 85E 02 2 m 0 1 1 1 0 1 45 gt stable 210460 8 38E 01 4 d 0 1 1 1 0 1 Sc 46 gt stable 200470 4 54 00 4 0 1 0 1 0 1 47 gt Sc 47 1 0 210470 3 35 00 4 d 0 1 1 1 1 1 Sc 47 7 stable 230470 3 26E 01 2 m 0 1 1 1 1 1 V 47 gt stable 210480 4 37E 01 3 h 0 1 1 1 0 1 Sc 48 gt stable 240480 2 16 01 3 h 0 1 0 1 0 1 Cr 48 gt V 48 1 0 230480 1 60 01 4 0 1 1 1 1 1 V 48 gt stable 200490 8 72E 00 2 m 0 1 0 1 0 1 Ca 49 gt Sc 49 1 0 210490 5 72E 01 2 m 0 1 1 1 1 1 Sc 49 gt stable 240490 4 23E 01 2 m 0 1 0 1 0 1 49 gt V 49 1 0 230490 3 30 02 4 0 1
26. 8 k x cloud depletion factor decay operator equal to k k 1 k 1 71 gt Q m l m Jim k 44 4 J m j i where Qm the total number of atoms for the m radionuclide immediately following reactor shut down RSAC 7 2 34 October 2010 atnematical Moaels Qon A 72 A K2 where x downwind distance m u average wind velocity m s K2 leakage rate decay constant s T period of exposure to cloud s e Ht G r v B E r pee A 73 where r distance from a source to the receptor v flux to dose conversion factor for the i energy group m dose buildup factor as a function of the i energy group and the distance traveled by the gamma ray linear absorption coefficient for air for the i energy group m Buildup factors for air used in RSAC 7 2 have been developed from those published by Berger et al 1968 The Berger buildup factors for air change very rapidly in the 60 to 300 keV energy range when the travel distance exceeds four mean free paths Traditional equations used to calculate buildup factors for shielding applications do not model buildup factors well in this energy range The Berger buildup factors for air were therefore approximated in RSAC 7 2 using an equation of the form BE ur 1 a E ur b E ur P A 74 A comparison of buildup factors for air calculated using Equation A 74 with those published by Be
27. Internal External Dose Calculations This series allows the user to perform a variety of dose calculations The radionuclide source term for these calculations is the radionuclide inventory created and operated on in the 1000 and 2000 Series An internal dose can be calculated for up to 23 organs in addition to the committed effective dose equivalent CEDE for the inhalation or ingestion pathways Internal doses are calculated using dose conversion factors from Federal Guidance Report No 11 Eckerman 1988 Ingestion doses from a chronic release are calculated using models described in NRC Regulatory Guide 1 109 NRC 19772 Because of the lack of a consensus model equations for calculating ingestion doses from an acute release have been developed specifically for RSAC 7 Standard ingestion constants are provided in the program however the user can alter any of the constants External dose can also be calculated for up to 23 organs in addition to the external effective dose equivalent EDE for the ground surface and for air immersion pathways The air immersion model should be used with caution to ensure that the plume has diffused to the ground level and that the plume size is large compared to the mean free path of the gamma rays Otherwise using the air immersion model can result in significant error in the dose calculation External doses are calculated using dose rate conversion factors from Federal Guidance Report No 12 Eckerman 1993 E
28. Muscle 15 Esophagu 21 GROUND SURFACE ORGAN NO Lungs 1 S wall 2 SI wall 3 ULI wall 4 LLI wall 5 Testes 6 Breast 7 BSurface 8 R Marrow 9 Thyroid 10 Kidney 11 Liver 12 Spleen 13 Pancreas 14 Muscle 15 Skin 16 Brain 17 Thymus 18 U Bladd 19 Adrenal 20 Esophagu 21 Ovaries 22 Uterus 23 EXT EDE 24 4 64 04 2 87 03 9 22 02 5 11 04 3 17 03 1 02 03 5 00E 04 3 09 03 9 94 02 EFFECTIVE DOSE ORDERED BY DOSE DOWNWIND DISTANCES M 1 00E 02 5 00 02 1 00 03 3 84 05 2 38 04 7 65 03 8 09 04 5 01 03 1 61 03 5 92 04 3 67 03 1 18 03 5 86 04 3 63 03 1 17 03 5 68 04 3 52 03 1 13 03 5 55 04 3 44 03 1 11 03 5 50 04 3 41 03 1 09 03 5 41 04 3 35 03 1 08 03 5 22 04 3 23 03 1 04 03 5 21 04 3 23 03 1 04 03 5 19 04 3 22 03 1 03 03 5 17 04 3 20 03 1 03 03 5 16E 04 3 19 03 1 03 03 5 14 04 3 18 03 1 02 03 5 11 04 3 17 03 1 02 03 5 10 04 3 16 03 1 02 03 5 10 04 3 16 03 1 01 03 5 08 04 3 15 03 1 01 03 5 03 04 3 12 03 1 00 03 5 00E 04 3 09 03 9 94 02 4 84 04 2 99 03 9 62 02 4 75 04 2 94 03 9 46 02 4 64 04 2 87 03 9 22 02 EFFECTIVE DOSE EQUIVALENT rem DOWNWIND DISTANCES 1 00 02 5 00 02 1 00 03 6 49 03 4 02 02 1 29 02 3 08E 03 1 91E 02 6 13 01 3 02 03 1 87 02 6 01 01 3 06E 03 1 90E 02 6 09 01 3 13 03 1 94 02 6 23 01 1 48 04 9 17 02 2 95 02 8 52
29. SM and software quality assurance SQA requirements of DOE O 414 1C Quality Assurance dated 6 17 05 for RSAC 7 This chapter supplements the quality assurance program QAP requirements of Title 10 Code of Federal Regulations CFR 830 Subpart A Quality Assurance for DOE nuclear facilities and activities The SQA requirements for DOE including the National Nuclear Security Administration NNSA and its contractors are necessary to implement effective quality assurance QA processes and achieve safe nuclear facility operations DOE promulgated the software requirements and this guidance to control or eliminate the hazards and associated vulnerability posed by security software Software failures or unintended output can lead to unexpected program failures and undue risks to the DOE NNSA mission the environment the public and the workers This standard includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities This guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at DOE NNSA facilities This chapter should be used by organizations to help determine and support the steps necessary to address possible design or functional implementation deficiencies that might exist and to reduce operational hazards related risks to an acceptable level Attributes such as the facility life cyc
30. TOTAL RADIONUCLIDE REMAINING 3 785 17 D S OR 1 023 07 CI NOBLE GASES 1 000E 00 Direct Radionuclide Input PREVIOUS INVENTORY INCREASED BY THE FOLLOWING VALUES NUCLIDE HALF LIFE GRAM CURIE 922330 u233 1 592 05 yr 1 000E 02 9 638 01 922340 U234 2 455 05 yr 1 000E 02 6 223E 01 922350 1235 7 038 08 yr 1 000E 04 2 161E 02 922380 1238 4 468 09 yr 1 000E 07 3 362E 00 Meteorological Data MEAN WIND SPEED 1 000E 00 m s MIXING LAYER HEIGHT 4 000E 02 m WET DEPOSITION SCAVENGING COEFFICIENT DRY DEPOSITION VELOCITIES m s SOLIDS 1 000E 03 HALOGENS 1 000E 02 CESIUM 1 000E 03 RUTHENIUM 1 000E 03 THERE IS 1 SET OF LEAKAGE CONSTANTS K1 K2 1 000 00 0 000E 00 PLUME MEANDER FACTOR 1 00E400 PASQUILL CLASS E METEOROLOGY P G NO BUILDING WAKE CORRECTION MADE STACK HEIGHT AIR DENSITY 0 000E 00 1 s 0 000E 00 m 1 099E 03 g cu m NOBLE GASES 0 000 00 SIGMA VALUES DOWNWIND DISTANCE STACK SIGY SIGZ CHI Q HEIGHT m m m s m 3 1 000 02 0 000E 00 6 695E 00 3 489 00 1 363 02 5 000 02 0 000E 00 2 864E 01 1 296 01 8 574 04 1 000 03 0 000E 00 5 356 01 2 134 01 2 785 04 5 000 03 0 000E 00 2 291E 02 5 641 01 2 463E 05 1 000E 04 0 000E 00 4 285 02 7 769E 01 9 562E 06 PLUME DEPLETION BY FALLOUT IS INCLUDED FRACTION OF PLUME REMAINING AIRBORNE FOLLOWING DEPLETION BY DEPOSITION DOWNWIND DISTANCE SOLIDS HALOGENS CESIUM RUTHENIUM 1 000E 02 9 527E 01 6 161 01 9 527 01 9 5
31. factor lt Comment Next gt Figure 3 73 Screen 3C Optional Ground Surface Dose Parameters Screen 3D Optional Air Immersion Dose Parameters This screen appears only if option 6 is chosen for Type of Dose Calculation on screen 2 Enter decay time s for exponential decay functions see Figure 3 74 Air Immersion Dose Parameters Line 7001 Help Decay Time for exponential decay function seconds If 0 RSAC defaults to program calculated time necessary to give 100 releases lt Back Comment Next gt Figure 3 74 Screen 3 Optional Air Immersion Dose Parameters RSAC 7 3 57 October 2010 Using RSAC 7 2 Screen Optional Internal External Organ Selection This screen appears only if Organs will be listed on a upcoming screen is chosen on screen 2 On this screen see Figure 3 75 select the organ using one of the following methods Scroll through the list and click on the desired organ type the organ name to quickly select the desired organ To unselect an organ click it in the list a second time To clear all selected click the Clear Selected button Internal Exteranal Organ Selection Line 7002 Help Selected Stomach Vall Small Intestine Vall Upper Large Intestine Vall Lower Large Intestine all Testes Breast Bone Surface Red Marrow Thyroid Kidneys Liver Spleen Pancreas Muscle Skin Brain x Clear Selected lt
32. 0 491231 4 78E 01 1 5 3 13E 03 1 2 1 0 0 3 In 123m gt Sn 123m 1 0 501230 1 29 02 4 1 62 03 1 1 1 1 0 5 123 gt stable 491230 6 17E 00 1 5 3 21 03 1 0 1 6 0 In 123 gt Sn123m 1 0 501231 4 01 01 2 m 2 94E 04 I 1 1 7 0 Sn 123m gt stable 541230 2 08E 00 3 h 0 1 0 3 0 1 Xe 123 gt 1 123 1 0 RSAC 7 2 B 21 October 2010 RSAC 7 2 Nuclear Data Library 531230 1 32E 01 3 h 0 1 2 1 1 1 123 gt 123 1 0 521231 1 19 02 4 0 1 0 1 2 1 Te 123m gt Te 123 1 0 521230 9 20E 16 5 y 0 1 1 1 3 1 Te 123 gt stable 511240 6 02E 01 4 d 0 1 1 1 0 1 Sb 124 gt stable 531240 4 18E 00 4 d 0 1 1 2 0 1 1 124 gt stable 461240 5 60 01 1 6 3 03 06 1 0 1 0 0 3 Pd 124 gt Ag 124 1 0 471240 1 72 01 1 6 5 85 04 1 0 1 1 0 3 124 gt 124 1 0 481240 1 25 00 1 S 1 41 02 1 0 1 2 0 3 124 gt In 124 1 0 491240 3 12E 00 1 5 1 35 02 1 1 1 3 0 3 In 124 gt stable 511241 9 30E 01 1 5 0 1 1 1 0 1 Sb 124m gt stable 471250 1 66E 01 1 5 1 39 04 1 0 1 0 0 3 Ag 125 gt Cd 125 1 0 481250 6 50 01 1 5 7 78 03 1 1 1 1 0 3 Cd 125 gt In 125 1 0 491251 1 22 01 1 5 7 96 03 1 1 1 2 0 3 In 125m Sn 125m 1 0 491250 2 36E 00 1 5 1 35 02 1 0 1 3 0 3 In 125 gt Sn 125m 1 0 501251 9 52 00 2 m 5 00E 03 1 1 1 4 0 Sn 125m gt Sb 125 1 0 501250 9 64 00 4 1 00 02 1 0 1
33. 0 1 3 0 133 gt Te 133 13 521330 1 25E 01 2 m 1 1 2 4 0 133 gt 1 133 1 0 531331 9 00 00 s 1 29 01 l 0 2 5 0 I 133m gt Xe 133 1 0 1 133 0288 Xe 133m Xe 133 531330 2 08E 01 3 h ii 0 9712 1 2 6 0 9712 54133 21968 00 4 d 2 67E 03 1 0 3 7 0 133 gt 133 1 0 541330 5 24E 00 4 d 8 79 04 l 1 3 8 2 01__ Xe 133 gt stable 561331 3 89 01 3 h 0 1 0 1 0 1 133 gt 133 1 0 561330 1 05 01 5 y 0 l 1 l l 1 Ba 133 gt stable 491340 138E 01 1 s 6 96E 06 1 0 1 0 0 3 In 134 gt Sn 134 1 0 501340 1 12E 00 l s 1 19E 02 1 1 1 1 0 3 Sn 134 gt Sb 134 1 0 511341 1 01 01 l s 2 58 01 1 1 1 2 0 3 Sb 134m gt Te 134 1 0 511340 7 80E 01 1 s 2 58 01 1 0 1 3 0 Sb 134 gt 134 1 0 521340 418E 01 2 m 1 0 1 4 920E 03 Te 134 gt I 134m 1 0 531341 3 52E 00 2 m 4 52E 01 0 98 0 2 5 0 I 134m gt I 134 98 531340 5 25 01 2 m 4 57E 01 1 1 2 6 0 1 134 gt stable 541341 2 90 01 1 s 2 38E 02 1 1 3 0 0 3 Xe 134m gt stable 550010 1 00E 23 5 y 8 00E 01 1 1 4 0 2 pseudo 550020 190 20 5 y 5 00E 03 1 0 4 1 2 pseudo gt Cs 134m 1 0 551341 2 91E 00 3 h 5 30E 05 1 2 4 2 0 Cs 134m gt Cs 134 1 0 550030 3 0018 5 y 3 80E 01 1 0 4 0 2 pseudo 550040 1 00E 19 5 y 1 00E 03 1 0 4 1 2 pseudo gt Cs 134 1 0 551340 207E 00 5 y 1 38E 05 1 1 4 5 2 30 01__ Cs 134 gt stable 581340 3 16E 00 4 d 0
34. 0 1 30 1 Po 216 gt Pb 212 1 0 822120 1 06E 01 3 h 0 1 0 1 31 1 Pb 212 gt Bi 212 1 0 Bi 212 gt 208 3593 832120 6 06E 01 2 m 0 0 3593 0 1 32 1 5 212 812080 3 05 00 2 m 0 I 1 1 33 1 T1 208 gt stable 842120 2 99E 07 1 5 0 1 1 0 1 Po 212 gt stable 101257 Md 257 Fm 257 85 sk Es 253 0 5 52E 00 3 h 0 1 0 1 0 1 15 start 4N 1 100257 0 1 01 02 4 0 1 0 1 1 1 Fm 257 gt Cf 253 1 0 Cf 253 Cm 249 0031 Es 253 982530 1 78 01 4 0 0 0031 2 1 2 1 9969 962490 6 42 01 2 m 0 1 2 1 3 1 Cm 249 gt Bk 249 1 0 100253 Fm 253 Es 253 88 sk Cf 249 0 3 00 00 4 0 1 0 1 4 1 121 992530 2 05 01 4 0 1 0 1 5 1 Es 253 gt Bk 249 1 0 972490 3 20E 02 4 d 0 1 0 1 6 1 Bk 249 gt 249 1 0 982490 3 5 E 02 5 y 0 1 3 1 7 1 Cf 249 gt Cm 245 1 0 942450 1 05 01 3 h 0 1 0 1 8 1 Pu 245 gt 245 1 0 952450 2 05 00 3 h 0 1 1 1 9 1 Am 245 gt Cm 245 1 0 972450 4 94 00 4 0 1 0 1 0 1 Bk 245 gt Cm 245 1 0 962450 8 50E 03 5 y 0 1 0 1 11 1 Cm 245 gt Pu 241 1 0 RSAC 7 2 B 41 October 2010 RSAC 7 2 Nuclear Data Library 942410 1 43E 01 5 y 0 1 1 1 12 1 Pu 241 gt Am 241 1 0 Cm 241 Am 241 99 962410 3 28E 01 4 d 0 0 99 0 1 0 1 sk Pu 237 01 952410 4 33E 02 3 y 0 1 3 1 14 1 Am 241 gt 237 1 0 922370 6 75 00 4 0 1 2 1 15 1 U 237 gt 237 1 0 952370
35. 0 1 5 0 Te 131 gt I 131 1 0 531310 8 03 00 4 4 15 03 0 01086 0 2 6 3 23 01 I 131 gt 131 01086 541311 1 18E 01 4 d 1 04E 06 1 1 3 7 0 Xe 131m gt 131 gt 1 0 561311 1 46 01 2 m 0 1 1 1 0 1 Ba 131m gt Ba 131 1 0 571310 5 90E 01 2 m 0 1 0 1 0 1 La 131 gt Ba 131 1 0 561310 1 15E 01 4 d 0 1 0 1 2 1 131 gt Cs 131 1 0 551310 9 69 00 4 0 1 1 4 3 1 Cs 131 gt stable 481320 1 45 01 1 5 6 14 06 1 0 1 0 0 3 Cd 132 gt In 132 1 0 491320 2 07 01 1 5 6 62 03 1 0 1 1 0 3 In 132 gt Sn 132 1 0 501320 3 97 01 1 5 5 86 01 1 1 1 2 0 Sn 132 gt Sb 132 1 0 511321 4 10E 00 2 m BH 1 1 1 3 0 Sb 132m gt Te 132 1 511320 2 79 00 2 Hin 1 0 1 4 0 Sb 132 gt Te 132 521320 3 20E 00 4 d Binh 1 1 1 5 4 89E 04 Te 132 gt I 132 1 0 RSAC 7 2 B 24 October 2010 RSAC 7 2 Nuclear Data Library 531321 1 39E 00 3 h 0 0 86 0 2 0 1 1 132 gt I 132 86 531320 2 30E 00 3 h 2 06 02 1 1 2 7 0 1 132 gt stable 551320 6486 00 4 d 0 1 1 4 0 1 Cs 132 gt stable 571320 4 80E 00 3 h 0 1 1 1 0 1 La 132 gt stable 491330 1 80 01 1 s 3 95E 04 1 0 1 0 0 3 In 133 gt Sn 133 1 0 501330 1 45E 00 1 s 1 69E 01 1 0 1 1 0 3 Sn 133 gt Sb 133 1 0 Sb 133 Te 133m 022 133 511330 25000 2 m IH 0 978 1 1 2 0 978 521331 5 54 01 2 m 0 13
36. 0 3 Ce 147 gt Pr 147 1 0 591470 1 34 01 2 m 5 38E 02 1 0 1 5 0 Pr 147 gt Nd 147 1 0 601470 1 10 01 4 d 2 96E 04 1 2 1 6 2 01 01 Nd 147 gt Pm 147 1 0 610010 1 00 17 5 y THHHHHE 1 0 1 7 2 pseudo gt pseudo 1 0 610020 1 00 19 5 1 00 01 1 0 1 8 2 pseudo gt Pm 147 1 0 611470 2 62E 00 5 y HHH 1 6 1 9 6 19E 02 Pm 147 gt Sm 147 1 0 620010 7 00E 19 5 y 7 00E 01 1 5 1 0 2 pseudo gt Sm 147 1 0 651470 1 64E 00 3 h 0 1 0 1 0 0 Tb 147 gt Gd 147 1 0 641470 3 81E 01 3 h 0 1 2 1 1 0 Gd 147 gt Eu 147 1 0 651510 1 76E 01 3 h 0 1 0 1 0 0 Tb 151 Gd 151 1 0 641510 1 24E 02 4 d 0 1 1 1 1 1 Gd 151 gt Stable 631470 2 41E 01 d 0 1 0 1 2 0 Eu 147 gt Sm 147 1 0 621470 1 06 11 5 1 01 06 1 1 1 16 0 Sm 147 gt stable 551480 1 58 01 1 6 1 81 05 1 0 4 0 0 3 Cs 148 gt Ba 148 1 0 561480 6 07 01 1 S 1 52E 02 1 0 1 1 0 3 148 gt 148 1 0 571480 1 26E 00 1 5 3 42E 01 1 0 1 2 0 3 La 148 gt 148 1 0 581480 5 60 01 1 5 HHH 1 0 1 3 0 3 Ce 148 gt Pr 148 1 0 591480 2 29E 00 2 m 1 61E 01 1 1 1 4 0 Pr 148 gt stable 610030 8 00E 19 5 y 1 50E 01 1 0 1 0 2 pseudo gt Pm 148m 1 0 Pm 148m pseudo 958 Pm 148 611481 4 13E 01 4 d 7 42E 07 0 042 1 1 0 042 610040 1 12E 20 5 y 4 20E 01 1 0 1 2 2 pseudo gt Pm 148 1 0 611480 5 37E 00 4 d 5 10E 06 1 2 1 3 0 Pm 148 gt m 148 641480 7 46E 01 5 y 0 1 1 1 0 1 Gd 148 gt stable 631480 5 45 01 4 0 1 0 1 0 1 Eu 148 gt Sm 148 621480 7 00 15 5 0 1 1 1 1 1 S
37. 0 9987 0 1 28 0 3 sk Pa 234 922340 2 46 05 5 y 0 1 4 1 29 1 U 234 gt Th 230 1 0 Pa 230 U 230 0 095 912300 1 74E 01 d 0 0 095 0 1 30 1 sk Th 230 922300 2 08E 01 4 d 0 1 1 1 31 1 U 230 gt 226 1 0 Ac 226 Th 226 88 892260 2 94 01 3 h 0 0 83 0 1 0 1 5 226 902260 3 06 01 2 m 0 1 1 1 33 1 Th 226 gt Ra 222 1 0 902300 7 54 04 5 y 0 1 0 1 34 1 Th 230 gt Ra 226 1 0 882260 1 60 03 5 y 0 1 1 1 35 1 Ra 226 gt Rn 222 1 0 RSAC 7 2 B 43 October 2010 RSAC 7 2 Nuclear Data Library 872220 1 42E 01 m 0 1 1 1 0 1 222 gt 222 1 0 862220 3 82E 00 d 0 1 1 3 37 1 Rn 222 gt 218 Ra 222 sk Rn 218 882220 3 62E 01 1 S 0 1 2 1 38 1 1 0 gt Po 214 1 0 Po 218 gt Pb 214 9998 842180 3 98E 00 m 0 1 0 1 39 1 5 218 822140 2 68E 01 m 0 1 1 1 40 1 Pb 214 gt Bi 214 1 0 862180 3 50E 02 S 0 I 1 1 41 1 218 gt 214 1 0 Bi 214 gt 9998 214 832140 1 99E 01 2 m 0 0 9998 0 1 42 1 5 214 842140 1 64E 04 1 S 0 1 1 1 43 1 Po 214 gt Pb 210 1 0 812100 1 30 00 2 m 0 1 0 1 0 1 1 210 gt 210 1 0 822100 2 22 01 5 y 0 1 0 1 45 1 Pb 210 gt Bi 210 1 0 832100 5 01 00 4 d 0 1 0 1 46 1 1 210 gt 210 1 0 842100 1 38E 02 4 d 0 1 1 1 47 1 Po 210 gt stable Es 255 Fm 255 92 sk Bk 251 992550 3 98E 01 4 d 0 1 0 1 0 0 3 start 4N 3 100255 0 2 01
38. 01 3 h 0 1 1 3 1 1 Kr 79 gt stable 290800 9 1 TE 02 1 5 7 03E 07 1 0 1 0 0 3 Cu 80 gt Zn 80 1 0 300800 5 40E 01 1 S 7 55E 04 1 0 1 1 0 3 Zn 80 gt 80 1 0 310800 1 68 00 1 5 2 13E 02 1 0 1 2 0 3 Ga 80 gt Ge 80 1 0 320800 2 95E 01 1 S 8 88E 02 1 0 1 3 0 3 Ge 80 gt As 80 1 0 330800 1 52 01 1 S 1 49 02 1 1 1 4 0 As 80 gt stable 350801 4 42E 00 3 h 0 1 0 2 0 1 Br 80m gt Br 80 1 0 350800 1 77E 01 2 m 0 1 1 2 1 1 Br 80 gt stable 380800 1 06E 02 2 m 0 1 0 1 0 1 Sr 80 gt Rb 80 1 0 370800 3 40E 01 1 S 0 1 1 1 1 0 3 Rb 80 gt stable 290810 7 45 02 1 S 3 67E 08 1 0 1 0 0 3 Cu 81 gt Zn 81 1 0 300810 2 90E 01 1 S 1 32 04 1 0 1 1 0 3 7 81 gt Ga 81 1 0 310810 1 22 00 1 S 1 16E 02 1 0 1 2 0 3 Ga 81 gt Ge 81 1 0 320810 7 60 00 1 S 1 33E 01 1 0 1 3 0 3 Ge 81 gt As 81 1 0 330810 3 33E 01 1 S 5 98E 02 1 0 1 4 0 As 81 gt Se 81 1 0 340811 5 73E 01 2 m 6 85E 03 1 0 1 5 0 Se 81m gt Se 81 1 0 340810 1 85E 01 2 m 2 19E 03 1 1 1 6 0 Se 81 gt stable 380810 2 23E 01 2 m 0 1 1 1 0 1 Sr 81 gt Rb 81 1 0 370811 3 05E 01 2 m 0 1 0 1 1 1 Rb 81m gt Rb 81 1 0 370810 4 57 00 3 h 0 1 0 1 2 1 Rb 81 gt Kr 81 1 0 360810 2 29 05 5 y 0 1 1 3 3 1 Kr 81 gt stable 350010 1 00 23 5 3 30E 02 1 3 2 0 2 pseudo 350020 4 00 19 5 2 00 04 1 2 2 1 2 pseudo 350030 1 00 23 5 5 00 02 1 2 2 2 2 pseudo 350040 2 00 19 5 5 00 05 1 1 2 3 2 pseudo 350821 6 13E 00 2 m 8 00E 05 0 976 0 2 4 0 Br 82m
39. 01 3 h 0 1 1 1 0 1 Fm 255 gt 251 1 0 992510 3 30E 01 3 h 0 1 0 1 0 1 Es 251 gt Cf 251 1 0 982510 8 98E 02 5 y 0 1 0 1 3 1 Cf 251 gt Cm 247 1 0 962470 1 56E 07 5 y 0 1 0 1 4 1 Cm 247 gt Pu 243 1 0 942430 4 96E 00 3 h 0 1 1 1 5 1 Pu 243 gt Am 243 1 0 9724770 1 38E 03 5 y 0 1 0 1 0 1 247 gt Am 243 1 0 952430 7 37E 03 5 y 0 1 1 1 7 1 243 gt 239 1 0 922390 2 35 01 2 0 1 0 1 0 1 U 239 gt 239 1 0 932390 2 36 00 4 0 1 2 1 1 1 239 gt 239 1 0 952390 1 19 01 3 h 0 1 1 1 1 1 Am 239 gt Pu 239 1 0 Cm 243 Pu 239 998 962430 2 91 01 5 y 0 0 998 0 I 2 1 sk Am 243 942390 2 41 E 04 5 y 0 1 2 1 12 1 Pu 239 gt U 235 1 0 942350 2 53 01 2 0 1 0 1 0 1 Pu 235 gt Np 235 1 0 932350 3 96E 02 4 d 0 0 9999 0 1 0 1 235 gt U 235 0 9999 922350 7 04E 08 5 y 0 1 0 1 15 1 U 235 gt Th 231 1 0 RSAC 7 2 B 44 October 2010 RSAC 7 2 Nuclear Data Library 902310 2 55 01 3 h 0 1 1 1 16 1 Th 231 gt Pa 231 1 0 922310 4 20E 00 4 d 0 1 0 1 17 1 U 231 gt Pa 231 1 0 912310 3 28E 04 5 y 0 1 5 1 18 1 231 gt 227 1 0 882270 4 22 01 2 m 0 1 4 1 0 1 227 gt 227 1 0 912270 3 83E 01 2 m 0 0 15 4 I 0 1 Pa 227 Th 227 15 Ac 223 85 892230 2 10E 00 2 m 0 1 0 1 1 0 3 Ac 223 gt Fr 219 1 0 852150 1 00E 04 1 5 0 1 10 1 3 0 3 At 215 gt Bi 211 1 0 Ac 227 gt Th
40. 03 2 11 02 6 80 01 5 79 00 ET AIR 8 6 24 04 3 86 03 1 23 03 9 71 01 KIDNEYS 9 2 09 03 1 30 02 4 17 01 3 54 00 LIVER 10 3 80 03 2 36 02 7 59 01 6 49 00 LLI WALL 11 4 15 04 2 58 03 8 29 02 7 06 01 LUNGS 12 2 74 05 1 70 04 5 47 03 4 70 02 MUSCLE 13 1 91 03 1 18 02 3 81 01 3 22 00 OVARIES 14 2 26 03 1 40 02 4 49E 01 3 79 00 PANCREAS 15 2 51 03 1 56 02 5 01 01 4 22 00 R MARROW 16 2 84 03 1 76 02 5 67 01 4 83 00 SI WALL 17 6 36 03 3 94 02 1 26 02 1 02 01 18 1 22 03 7 56 01 2 43 01 2 05 00 SPLEEN 19 2 40 03 1 49 02 4 78 01 4 05 00 ST WALL 20 5 33 03 3 32 02 1 06 02 8 11 00 TESTES 21 9 64 02 5 97 01 1 92 01 1 61 00 THYMUS 22 3 41 03 2 11 02 6 80 01 5 79 00 THYROID 23 2 63 05 1 63 04 5 22 03 4 41 02 ULI WALL 24 2 03 04 1 26 03 4 03 02 3 37 01 UTERUS 25 1 70 03 1 06 02 3 39 01 2 84 00 INHALATION EQUIVALENT DOSE ORDERED BY DOSE DOWNWIND DISTANCES uy ORGAN NO 1 00E 02 5 00 02 1 00E 03 5 00E 03 LUNGS 12 2 74E 05 1 70E 04 5 47E 03 4 70E 02 THYROID 23 2 63E 05 1 63E 04 5 22E 03 4 41E 02 ET AIR 8 6 24 04 3 86E 03 1 23 03 9 71 01 LLI WALL 11 4 15 04 2 58 03 8 29 02 7 06 01 COLON 6 2 94 04 1 82 03 5 86 02 4 95 01 ULI WALL 24 2 03 04 1 26 03 4 03 02 3 37 01 B WALL 2 6 95 03 4 29 02 1 38 02 1 14 01 SI WALL 17 6 36E 03 3 94 02 1 26 02 1 02 01 ST WALL 2
41. 03 5 28 02 1 70 02 2 43 03 1 50 02 4 83 01 6 60 03 4 09 02 1 31 02 1 67 03 1 03 02 3 32E 01 3 12 03 1 93 02 6 20E 01 3 09 03 1 92 02 6 15 01 3 10 03 1 92 02 6 18 01 2 90E 03 1 80 02 5 77 01 2 85 03 1 77 02 5 68 01 3 84 03 2 38 02 7 65 01 3 06E 03 1 90E 02 6 09 01 3 05E 03 1 89 02 6 07E 01 3 13 03 1 94 02 6 22E 01 3 51 03 2 18 02 6 99 01 2 78 03 1 72 02 5 53 01 1 28 04 7 92 02 2 54 02 3 00E 03 1 86 02 5 96E 01 5 65 04 3 50 03 1 12 03 Air Immersion Dose Equivalent calculation RELEASE TIME FOR EXPONENTIAL DECAY FUNCTION 7 80 01 2 92 01 8 61 01 3 22 01 8 41 01 3 15 01 rem 5 00E 03 1 00 04 6 51 02 2 45 02 1 36 02 5 11 01 9 98E 01 3 73 01 9 86E 01 3 69 01 9 57 01 3 58 01 9 36 01 3 50 01 9 26 01 3 47 01 9 10E 01 3 41 01 8 79 01 3 29 01 8 77 01 3 28 01 8 74 01 3 27 01 8 71 01 3 26 01 8 68 01 3 25 01 8 64 01 3 23 01 8 61 01 3 22 01 8 59E 01 3 22 01 8 59 01 3 21 01 8 56 01 3 20 01 8 47 01 3 17 01 8 41 01 3 15 01 8 14 01 3 05 01 8 00 01 2 99 01 7 80 01 2 92 01 5 00E 03 1 00 04 1 09 01 4 09 00 5 19 00 1 94 00 5 08 00 1 90 00 5 15 00 1 93 00 5 27E 00 1 97 00 2 49 01 9 33 00 1 44 01 5 37 00 4 09 00 1 53 00 1 11 01 4 16 00 2 81 00 1 05 00 5 24 00 1 96 00 5 21 00 1 95 00 5 23 00 1 96
42. 0E 00 81 Tl 4 0E 03 1 7E 04 2 0E 03 4 0E 02 1 0E 00 82 Pb 4 5E 02 3 9E 03 2 5E 04 3 0E 04 1 0 00 83 1 3 5E 02 2 1 E 03 5 0E 04 4 0E 04 1 0E 00 84 Po 2 5E 03 1 7E 04 3 5E 04 9 5E 05 1 0 00 85 1 0 00 6 4E 02 1 0 02 1 0 02 1 0E 00 86 Rn 0 0E 00 0 0E 00 0 0E 00 0 0E 00 1 0E 00 87 Fr 3 0E 02 3 4E 03 2 0E 02 2 5E 03 1 0E 00 88 Ra 1 5E 02 6 4E 04 4 5E 04 2 5E 04 1 0 00 89 3 5E 03 1 5 04 2 0 05 2 5E 05 1 0E 00 90 Th 8 5E 04 3 6E 05 5 0E 06 6 0E 06 1 0E 00 91 Pa 2 5E 03 1 1 04 5 0 06 1 0 05 1 0E 00 RSAC 7 2 A 23 October 2010 atnematical IVioqels Table A 7 RSAC 7 2 element dependent parameters used to calculate concentrations in crops Root uptake factors Transfer coefficients Translocation Forage Produce Milk Meat factor Element Bia Biv Fa 92 U 8 5E 03 1 7 03 6 0 04 2 0 04 1 0E 00 95 Am 5 5E 03 1 1E 04 4 0E 07 3 5E 06 3 0E 01 96 Cm 8 5E 04 6 4E 06 2 0E 05 3 5E 06 3 0E 01 Equation A 38 is expressed in the same format as presented in Regulatory Guide 1 109 NRC 1977a As such it is expressed for only a single radionuclide However when the radionuclide of interest 1s the progeny of other radionuclides RSAC 7 2 corrects for decay chain ingrowth Equation A 38 contains a translocation factor which 1s not included in the original formulation of the NRC Regulatory Guide 1 109 model This parameter corrects for the translocation of activity deposited on plant leaves to the edible portio
43. 1 0 1 Rb 84 gt stable 320850 5 35E 01 1 S 6 44E 03 1 0 1 0 0 3 Ge 85 gt As 85 1 0 330850 2 02E 00 1 S 2 01E 01 0 8 0 1 1 0 3 As 85 gt Se 85 0 8 340850 3 17E 01 1 5 4 60 01 1 1 1 2 0 3 Se 85 gt Br 85 1 0 340851 1 90E 01 1 S 4 60E 01 1 0 1 3 0 3 Se 85m gt Br 85 1 0 Br 85 gt Kr 85m 9982 Kr85 350850 2 90E 00 2 m 1 69E 01 0 0018 1 2 4 0 0018 360851 4 48E 00 3 h 1 37E 02 0 211 0 3 5 0 Kr 85m Kr 85 211 360850 1 08 01 5 2 28 03 1 1 3 6 84E 01 Kr 85 gt stable 380851 6 76E 01 2 m 0 0 879 0 1 0 1 Sr 85m gt Sr 85 0 879 380850 6 48E 01 4 d 0 1 1 1 1 1 Sr 85 gt stable 320860 2 59E 01 1 5 1 14 03 1 0 1 0 0 3 Ge 86 gt As 86 1 0 330860 9 45E 01 I S 1 13E 01 1 0 1 1 0 3 As 86 gt Se 86 1 0 340860 1 53E 01 1 S Hi 1 0 1 2 0 3 Se 86 Br 86 1 0 350860 5 5 E 01 1 S 2 92E 01 1 1 2 3 0 Br 86 gt stable RSAC 7 2 B 10 October 2010 RSAC 7 2 Nuclear Data Library 370860 1 86E 01 4 d 0 1 1 1 0 1 Rb 86 gt stable 400860 1 65E 01 3 h 0 1 1 1 0 1 Zr 86 gt Y 86 1 0 390861 4 80E 01 2 m 0 1 0 1 1 1 Y 86m gt 86 1 0 390860 1 47E 01 3 h 0 1 1 1 2 1 Y 86 gt stable 320870 1 26 01 1 S 1 83 04 1 0 1 0 0 3 Ge 87 gt As 87 1 0 330870 5 60 01 1 6 6 44E 02 I 0 I I 0 3 As 87 gt 5 87 1 0 340870 5 50 00 1 5 9 34 01 1 0 1 2 0 3 Se 87 gt Br 87 1 0 350870 5 57E 01 1 S 0
44. 1 0 1 Rh 99m gt stable 450990 1 61E 01 4 d 0 1 1 1 0 1 Rh 99 gt stable 371000 5 10 02 1 6 1 70 05 1 0 1 0 0 3 Rb 100 gt Sr 100 1 0 381000 2 02 01 1 6 2 38 02 1 0 1 1 0 3 Sr 100 gt Y 100 1 0 RSAC 7 2 B 14 October 2010 RSAC 7 2 Nuclear Data Library 391000 9 40E 01 1 S 8 57E 01 1 0 1 2 0 3 100 gt 71 100 1 0 401000 7 10 00 1 5 HHH 1 1 3 0 3 Zr 100 gt Nb 100 411001 2 99 00 1 5 4 69 01 1 1 1 4 0 3 Nb 100m gt stable 411000 1 50 00 1 5 4 69 01 1 1 1 5 0 3 Nb 100 gt stable 461000 3 63 00 4 0 1 1 1 0 1 Pd 100 gt Rh 100 451000 2 08E 01 3 h 0 1 1 1 0 1 Rh 100 gt stable 381010 18E 01 1 5 2 96 03 1 0 1 0 0 3 Sr 101 gt Y 101 1 0 391010 4 48E 01 1 S 2 69E 01 1 0 1 1 0 3 Y 101 gt Zr 101 1 0 401010 2 30 00 1 S HHH 1 0 1 2 0 3 Zr 101 gt Nb 101 1 0 411010 7 10 00 1 5 BRE 1 0 1 3 0 Nb 101 gt Mo 101 1 0 421010 1 46 01 2 m 12E 01 1 0 1 4 0 Mo 101 gt Tc 101 1 0 431010 1 42E 01 2 m 2 34E 04 1 1 1 5 0 Tc 101 gt stable 461010 8 47E 00 3 h 0 0 997 0 1 0 1 Pd 101 gt Rh 101 997 451011 4 34E 00 4 d 0 0 072 0 1 1 1 Rh 101m gt Rh 101 0 072 451010 3 30E 00 5 y 0 1 1 1 2 1 Rh 101 gt stable 381020 6 90E 02 1 5 1 97 04 1 0 1 0 0 3 Sr 102 gt Y 102 1 0 391020 3 60E 01 I S 5 37E 02 I 0 1 1 0 3 102 gt Zr 102 1 0 401020 2 90 00 1 S
45. 1 0 430941 5 20 01 2 0 1 1 1 1 1 Tc 94m gt stable 430940 2 93E 02 2 m 0 1 1 1 0 1 Tc 94 gt stable 350950 1 17 01 1 S 7 33E 06 1 0 2 0 0 3 95 gt Kr 95 1 0 360950 7 80 01 1 S 1 02E 02 1 0 3 1 0 Kr 95 gt Rb 95 1 0 370950 3 78E 01 1 S 8 96E 01 1 0 1 2 0 Rb 95 gt Sr 95 1 0 380950 2 39 01 1 5 Bin 1 0 1 3 0 3 Sr 95 gt 95 1 0 390950 1 03 01 2 m 9 48E 01 1 0 1 4 0 Y 95 gt 7 95 1 0 400950 6 40E 01 4 d 2 95E 02 1 1 1 5 2 33E 01 71 95 gt Nb 95m 1 0 410030 1 40E 18 5 y 4 50E 02 1 0 1 6 2 pseudo gt Nb 95m 1 0 410951 8 66E 01 3 h 1 29E 04 0 945 0 1 7 0 Nb 95m gt Nb 95 945 410950 3 50E 01 4 d 4 00E 05 1 1 1 8 8 51E 01 Nb 95 gt stable 430951 6 10E 01 4 d 0 0 04 0 1 0 1 Tc 95m gt Tc 95 04 430950 2 00 01 3 0 1 1 1 1 1 Tc 95 gt stable 410040 1 00 23 5 8 00 03 1 1 1 0 2 pseudo gt Nb 96 1 0 410050 1 00 19 5 1 00 03 1 0 1 1 2 pseudo gt Nb 96 1 0 410960 2 34 01 3 h 6 10E 04 1 1 1 2 0 Nb 96 gt stable 430961 5 15E 01 2 m 0 0 98 0 1 0 1 Tc 96m gt Tc 96 0 98 430960 4 28 00 4 0 1 1 1 1 1 96 gt stable RSAC 7 2 B 13 October 2010 RSAC 7 2 Nuclear Data Library 360970 1 49 01 1 5 4 06 05 1 0 3 0 0 3 Kr 97 gt Rb 97 1 0 370970 1 70 01 1 5 3 64 02 1 0 1 1 0 3 Rb 97 gt Sr 97 1 0 380970 4 26E 01 1 5 BRE 1 0 1 2 0 Sr 97 gt
46. 1 0 1 6 1 Ce 134 gt La 134 RSAC 7 2 B 25 October 2010 RSAC 7 2 Nuclear Data Library 571340 6 45E 00 2 m 0 1 1 1 1 0 3 La 134 gt stable 501350 2 91E 01 1 5 1 24 03 1 0 1 0 0 3 Sn 135 gt Sb 135 1 0 511350 1 71 00 1 5 1 96 01 1 0 1 1 0 3 Sb 135 gt Te 135 1 0 521350 1 90 01 1 5 Hid 1 0 1 2 0 135 gt I 135 1 0 531350 6 58E 00 3 h Hi 0 835 2 2 3 2 12 03 1 135 gt 135 1 0 541351 1 53E 01 2 m 1 52 01 1 1 3 4 0 Xe 135m gt Xe 135 1 0 540020 9 00E 16 5 y 3 20E 01 1 0 3 5 2 pseudo gt Xe 135 1 0 541350 9 14 00 3 h 9 78E 02 1 4 3 6 2 09 05 135 gt 1 1351 0 550050 6 50E 22 5 Bh 1 0 4 7 2 pseudo 550060 1 00E 24 5 y HHH 1 0 4 8 2 pseudo gt I 135m 1 0 551351 5 30E 01 2 m 6 25E 04 1 1 4 9 0 Cs 135m gt Cs 135 1 0 550070 8 80E 16 5 y 1 0 4 10 2 pseudo gt I 135 1 0 551350 2 30 06 5 9 01 04 1 1 4 11 2 391 Cs 135 gt stable 561351 2 87E 01 3 h 0 1 1 1 0 1 Ba 135m gt stable 581350 1 77E 01 3 h 0 1 0 1 0 1 135 gt 135 1 0 571350 1 95 01 3 h 0 1 1 1 1 1 La 135 gt stable 501360 4 13E 01 1 5 5 43E 05 I 0 1 0 0 3 Sn 136 gt Sb 136 1 0 511360 8 20E 01 1 S 2 99E 02 1 0 1 1 0 3 Sb 136 gt 136 1 0 521360 1 75E 01 1 5 Hehe 1 1 2 0 3 136 gt 1 136 1 0 531361 4 69E 01 1 5 HHH 1 1 2 0 0 3 I 136m gt stable 531360 8 34 01 1 5 Hid 1 1 2
47. 1 0E 04 8 0E 03 1 0E 00 50 Sn 3 0E 02 2 6E 03 1 0E 03 8 0E 02 1 0E 00 51 Sb 2 0E 01 1 3E 02 1 0E 04 1 0E 03 1 0E 00 52 Te 2 5E 02 1 7E 03 2 0E 04 1 5E 02 1 0E 00 53 I 1 5E 01 2 1E 02 1 0E 02 7 0 03 1 0 01 54 0 0E 00 0 0E 00 0 0E 00 0 0E 00 1 0E 00 55 Cs 8 0E 02 1 3E 02 7 0 03 2 0 02 5 0 01 56 1 5 01 6 4E 03 3 5E 04 1 5E 04 1 0E 00 57 La 1 0E 02 1 7E 03 2 0E 05 3 0E 04 1 0E 00 58 Ce 1 0E 02 1 7E 03 2 0E 05 7 5 04 3 0E 01 59 Pr 1 0E 02 1 7E 03 2 0E 05 3 0E 04 1 0E 00 60 Nd 1 0E 02 1 7E 03 2 0E 05 3 0E 04 1 0E 00 61 Pm 1 0E 02 1 7E 03 2 0E 05 5 0E 03 1 0E 00 62 Sm 1 0E 02 1 7E 03 2 0E 05 5 0E 03 1 0E 00 63 Eu 1 0E 02 1 7E 03 2 0E 05 5 0E 03 1 0E 00 64 Gd 1 0E 02 1 7E 03 2 0E 05 3 5E 03 1 0E 00 65 Tb 1 0E 02 1 7E 03 2 0E 05 4 5E 03 1 0E 00 66 Dy 1 0E 02 1 7E 03 2 0E 05 5 5E 03 1 0 00 67 1 0 02 1 7E 03 2 0E 05 4 5E 03 1 0E 00 68 Er 1 0E 02 1 7E 03 2 0E 05 4 0E 03 1 0 00 69 1 0 02 1 7 03 2 0 05 4 5 03 1 0E 00 70 Yb 1 0E 02 1 7E 03 2 0E 05 4 0E 03 1 0E 00 71 Lu 1 0E 02 1 7E 03 2 0E 05 4 5E 03 1 0E 00 72 Hf 3 5E 03 3 6E 04 5 0E 06 1 0 03 1 0E 00 73 Ta 1 0E 02 1 1E 03 3 0E 06 6 0E 04 1 0E 00 74 W 4 5E 02 4 3E 03 3 0E 04 4 5E 02 1 0E 00 75 Re 1 5E 00 1 5E 01 1 5E 03 8 0E 03 1 0E 00 76 Os 1 5E 02 1 5E 03 5 0E 03 4 0E 01 1 0E 00 77 Ir 5 5E 02 6 4E 03 2 0E 06 1 5E 03 1 0E 00 78 Pt 9 5E 02 1 1 02 5 0 03 4 0E 03 1 0E 00 79 Au 4 0E 01 4 3E 02 5 5E 06 8 0E 03 1 0E 00 80 Hg 9 0E 01 8 6E 02 4 5E 04 2 5E 01 1
48. 1 1 1 0 1 Sn 110 gt In 110 1 0 491101 6 91E 01 2 m 0 1 1 1 1 1 In 110m stable 491100 4 90 00 3 h 0 1 1 1 0 1 In 110 gt stable 410060 6 50E 16 5 1 60E 08 1 0 1 0 2 pseudo 411110 1 56E 01 1 1 41E 08 1 0 1 1 0 3 Nb 111 gt Mo 111 1 0 421110 3 00E 01 1 S 3 77E 05 1 0 1 2 0 3 Mo 111 gt Tc 111 1 0 431110 2 90E 01 1 5 2 49E 03 1 0 1 3 0 3 Tc 111 Ru 111 1 0 441110 2 12 00 2 m 1 80 02 1 0 5 4 0 3 Ru 111 Rh 111 1 0 451110 1 10E 01 1 S 5 56E 03 I 1 1 5 0 3 Rh 111 gt Pd 111 1 0 Pd 111m Pd 111 93 Ag 111 461111 5 50 00 3 h 1 25 04 0 27 1 6 0 3 27 461110 2 34 01 2 1 26 04 1 0 1 7 0 Pd 111 gt Ag 111m 1 0 471111 6 48 01 1 5 1 62 07 1 0 1 8 0 111 gt Ag 111 1 0 471110 7 45 00 4 d 1 58 07 1 1 1 9 3 461 Ag 111 gt stable 501110 3 53 01 2 m 0 1 0 1 0 1 Sn 111 gt In 111 491110 2 80 00 4 0 1 1 1 0 1 In 111 gt stable 480010 1 00 20 5 2 10 06 1 0 1 0 2 pseudo 480020 1 00 22 5 1 00 10 1 0 1 1 2 pseudo 481111 4 85 01 2 2 50 11 1 1 1 2 0 Cd 111m gt stable 421120 6 89E 01 1 5 4 16E 06 1 0 1 0 0 3 Mo 112 gt Tc 112 1 0 431120 2 80E 01 1 5 5 35 04 1 0 1 1 0 3 112 gt 112 1 0 441120 1 75 00 1 S 9 88E 03 1 0 5 2 0 3 Ru 112 gt Rh 112 1 0 451120 2 10E 00 1 5 7 53E 03 1 0 1 3 0 3 Rh 112 gt Pd 112 1 0 RSAC 7 2 B 18 October 2010 RSAC 7 2 Nuclear Data Library
49. 1 23 02 LUNGS 12 5 97 03 3 70 02 1 19 02 SPLEEN 19 5 39 03 3 34 02 1 07 02 ADRENALS 1 5 21 03 3 23 02 1 04 02 SKIN 18 4 73 03 2 94 02 9 45 01 TESTES 21 4 44 03 2 75 02 8 86 01 BREAST 4 21 03 2 61 02 8 42 01 5 INGESTION EFFECTIVE DOSE ORDERED BY DOSE DOWNWIND DISTANCES m ORGAN 1 00E 02 5 00E 02 1 00 03 ADRENALS 1 2 61 02 1 62 01 5 20 00 B WALL 2 1 73 03 1 07 02 3 45 01 BSURFACE 3 5 24 02 3 25 01 1 05 01 BRAIN 4 3 44 02 2 14 01 6 88 00 BREAST 5 2 11 02 1 31 01 4 21 00 COLON 6 1 91 04 1 19 03 3 83 02 ESOPHAGU 7 3 72 02 2 31 01 7 44 00 ET AIR 8 3 68E 02 2 28 01 7 36E 00 KIDNEYS 9 3 17 02 1 96 01 6 33 00 LIVER 10 3 09E 02 1 92 01 6 17 00 LLI WALL 11 1 22 04 7 55 02 2 43 02 LUNGS 12 7 16E 02 4 44 01 1 43 01 MUSCLE 13 3 80 02 2 36 01 7 59 00 OVARIES 14 6 44 02 4 00E 01 1 29 01 15 3 16E 02 1 96 01 6 29 00 R MARROW 16 3 25 03 2 02 02 6 50E 01 SI WALL 17 1 24E 03 7 71 01 2 49E 01 SKIN 18 4 73 01 2 94 00 9 45 01 SPLEEN 19 2 70E 02 1 67 01 5 37E 00 ST_WALL 20 5 44 03 3 36E 02 1 08 02 TESTES 21 2 22b402 1 38 01 4 43 00 THYMUS 22 3 72 02 2 31 01 7 44 00 THYROID 23 6 92E 05 4 30 04 1 38 04 ULI WALL 24 4 67 03 2 90 02 9 34 01 UTERUS 25 4 21 02 2 61 01 8 42 00 E 50 26 7 36E 05 4 57 04 1 47 04 Gamma Dose Calculation EXPOSURE TIME 1 0000E 00 S CALC
50. 1 4 0 Ga 74 gt stable 330740 1 78E 01 4 d 0 1 1 1 0 1 As 74 gt stable 350741 4 60 01 2 m 0 1 1 1 0 1 Br 74m gt stable 350740 2 54E 01 2 m 0 1 1 1 0 1 74 gt stable 270750 8 02 02 1 S 9 62E 09 1 0 1 0 0 3 Co 75 Ni 75 1 0 280750 6 00E 01 1 S 9 94E 06 1 0 1 1 0 3 Ni 75 gt Cu 75 1 0 290750 1 22E 00 1 5 2 71 04 1 0 1 2 0 3 Cu 75 gt Zn 75 1 0 300750 1 02E 01 1 S 1 09E 03 1 0 1 3 0 3 Zn 75 gt Ga 75 1 0 310750 1 26 02 1 5 1 79 04 1 0 1 4 0 3 Ga 75 gt Ge 75 1 0 RSAC 7 2 B 7 October 2010 RSAC 7 2 Nuclear Data Library 320751 4 77 01 1 S 2 06E 06 1 0 1 5 0 3 Ge 75m Ge 75 1 0 320750 8 28E 01 2 m 2 06E 06 1 1 1 6 4 14 01 Ge 75 gt stable 350750 9 67E 01 2 m 0 1 0 1 0 1 75 gt 75 1 0 340750 1 19E 02 4 d 0 1 1 1 1 1 Se 75 gt stable 280760 4 40E 01 I S 3 26E 06 1 0 1 0 0 3 Ni 76 gt Cu 76 1 0 290760 6 41E 01 I 2 70 04 1 0 1 1 0 3 Cu 76 gt Zn 76 1 0 300760 5 70E 00 1 5 2 95 03 1 0 1 2 0 3 Zn 76 gt Ga 76 1 0 310760 3 26E 01 1 5 1 28 03 1 1 1 3 0 Ga 76 gt stable 350760 1 62E 01 3 h 0 1 1 1 0 1 Br 76 gt stable 330010 8 00 22 5 3 40 04 1 0 1 0 2 pseudo 330760 1 09 00 4 2 23 07 1 1 1 1 0 As 76 gt stable 280770 1 03 01 1 6 4 51 07 1 0 1 0 0 3 Ni 77 gt 77 1 0 290770 4 69E 01 1 5 1 17 04 1 0 1 1 0 3 Cu 77
51. 2010 atnematical Models 5 Ah RSAC 7 2 2 2 A 32 restoring acceleration per unit vertical displacement s RSAC 7 2 default values for S are 8 7E 04 s for a weak inversion and 1 75E 03 s for a strong inversion Plume rise for a buoyant plume is calculated using 2 Ah 1 psy A 33 where 3 7 x10 Il stack gasses heat emission cal s Equation A 33 is used up to a distance x x 1 where downwind distance ft 2 3 x 0 52 FS h5 A 34 43 10 elevation of the point of release above the ground plane ft ll 0 3048 Ah m Beyond this distance plume rise is calculated using A 14 October 2010 atnematical Moaels 1 2 2 2 2 Ara 5 25x 5 5 x e where ue average windspeed at the elevation of the point of release above the ground plane ft s and allowing x x to increase to a maximum value of 5 A 3 DOSE CALCULATIONS A 3 1 Inhalation Dose RSAC 7 2 calculates inhalation doses using the ICRP 30 1979 model with Federal Guidance Report No 11 dose conversion factors DCFs The committed dose equivalent CDE is calculated for individual organs and tissues over a 50 year period after inhalation The CDE for each organ or tissue is multiplied by the appropriate ICRP 26 1977 weighting factor to calculate what is called the weighted committed dose equivalent WCDE R
52. 21 01 3 h 0 I 0 1 1 1 Os 182 gt Re 182a 1 0 751822 6 40E 01 3 h 0 1 1 1 0 1 182 gt stable 721830 1 07 00 3 h 0 1 0 1 0 1 Hf 183 gt Ta 183 1 0 731830 5 10 00 4 0 1 1 1 1 1 Ta 183 gt stable 721840 4 12E 00 3 h 0 1 0 1 0 1 Hf 184 gt Ta 184 1 0 731840 8 70E 00 3 h 0 1 1 1 1 1 Ta 184 gt stable 751841 1 69E 02 4 d 0 0 747 0 1 0 1 Re 184m gt 184 0 747 RSAC 7 2 B 36 October 2010 RSAC 7 2 Nuclear Data Library 751840 3 54E 01 4 d 0 1 1 1 1 1 Re 184 gt stable 771840 3 09 00 3 0 1 1 1 1 1 Ir 184 gt stable 731850 4 94 01 2 m 0 1 0 1 0 1 Ta 185 gt W 185 1 0 741850 7 51 01 4 0 1 1 1 1 1 W 185 gt stable 711850 1 44E 01 3 h 0 1 0 1 0 1 Ir 185 gt Os 185 1 0 761850 9 36E 01 4 d 0 1 1 1 1 1 Os 185 gt stable 731860 1 05 01 2 m 0 1 1 1 0 1 Ta 186 gt stable 751861 2 00E 05 5 y 0 1 0 1 0 1 Re 186m gt 186 1 0 751860 3 72E 00 4 d 0 0 922 1 1 1 1 Re 186 gt Os 186 922 771861 1 90 00 3 0 1 1 1 0 1 Ir 186m gt stable 781860 2 20E 00 3 h 0 1 0 1 0 1 Pt 186 gt Ir 186 1 0 711860 1 66E 01 3 h 0 1 1 1 1 1 Ir 186 gt stable 741870 2 40 01 3 h 0 1 0 1 0 1 W 187 gt Re 187 1 0 751870 4 33E 10 5 y 0 1 1 1 1 1 Re 187 gt stable 711870 1 05E 01 3 h 0 1 1 1 0 1 Ir 187 gt stable 741880 6 98E 01 4 d 0 1 1 1 0 1 W 188 gt Re 188 1 0 7518
53. 23 V 5 5E 03 1 3E 03 2 0E 05 2 5E 03 1 0E 00 24 Cr 7 5 03 1 9 03 1 5 03 5 5 03 1 0E 00 25 Mn 2 5E 01 2 1E 02 3 5E 04 4 0E 04 1 0E 00 26 Fe 4 0E 03 4 3E 04 2 5E 04 2 0E 02 1 0E 00 27 Co 2 0E 02 3 0E 03 2 0E 03 2 0E 02 1 0E 00 28 Ni 6 0E 02 2 6E 02 1 0E 03 6 0E 03 1 0E 00 29 Cu 4 0E 01 1 1E 01 1 5E 03 1 0E 02 1 0E 00 30 Zn 1 5E 00 3 9E 01 1 0E 02 1 0E 01 1 0E 00 31 Ga 4 0E 03 1 7E 04 5 0E 05 5 0E 04 1 0E 00 32 Ge 4 0E 01 3 4E 02 7 0 02 7 0 01 1 0E 00 33 AS 4 0E 02 2 6E 03 6 0E 05 2 0E 03 1 0E 00 34 Se 2 5E 02 1 1E 02 4 0E 03 1 5 02 1 0E 00 35 Br 1 5E 00 6 4E 01 2 0E 02 2 5E 02 1 0E 00 36 Kr 0 0E 00 0 0E 00 0 0E 00 0 0E 00 1 0E 00 37 Rb 1 5E 01 3 0E 02 1 0E 02 1 5E 02 1 0E 00 38 Sr 2 5E 00 1 1E 01 1 5E 03 3 0E 04 1 0E 00 39 Y 1 5E 02 2 6E 03 2 0E 05 3 0E 04 1 0E 00 40 Zr 2 0E 03 2 1E 04 3 0E 05 5 5E 03 1 0E 00 41 Nb 2 0E 02 2 1 E 03 2 0E 02 2 5E 01 1 0E 00 42 Mo 2 5E 01 2 6E 02 1 5E 03 6 0E 03 1 0E 00 43 Tc 9 5 00 6 4E 01 1 0E 02 8 5E 03 1 0E 00 44 Ru 7 5 02 8 6 03 6 0 07 2 0 03 5 0 02 45 1 5 01 1 7 02 1 0 02 2 0 03 1 0E 00 RSAC 7 2 A 22 October 2010 atnematical Models Table A 7 RSAC 7 2 element dependent parameters used to calculate concentrations in crops Root uptake factors Transfer coefficients Translocation Forage Produce Milk Meat factor Element Bivi Biv 46 1 5 01 1 7 02 1 0 02 4 0 03 1 0E 00 48 Cd 5 5E 01 6 4E 02 1 0E 03 5 5E 04 1 0E 00 49 In 4 0E 03 1 7E 04
54. 24 hour exposure from a sabotage event Corrected minor errors in the printing and display features Added the capability to perform joint frequency meteorological conditions to calculate both 50 and 95 metrological conditions for input into RSAC Established an internal validation process to assure proper verification of installation parameters Established 20 new examples for execution of the enhanced capabilities of RSAC 7 Added input units of curies grams and Becquerel to the direct input model RSAC 7 1 3 October 2010 Capabilities 1 2 Summary of RSAC 7 2 Capabilities RSAC 7 2 consists of nine subroutines Each subroutine performs a type of calculation and operates together with or independently of the others depending on the analysis being performed Historically these subroutines have been referred to as a series For consistency with earlier versions this nomenclature has been retained Both the series number and the subroutine function are indentified These series are identified by input series lines in multiples of 1000 A summary of each of the program series follows 1 2 1 1000 Series Fission Product Calculation and Inventory Decay RSAC 7 2 allows the user to establish an inventory of fission products and subsequent decay products by simulating the operation of a thermal reactor The user can simulate steady state transient or cyclic reactor operation A refueling option is also available After establishing the re
55. 4 0 1 136 gt stable 560010 5 00 22 5 6 10 01 1 0 1 0 2 pseudo gt Cs 136 1 0 551360 1 32E 01 4 d 7 51E 03 1 1 4 1 0 Cs 136 gt stable 601360 5 07E 01 2 m 0 1 0 1 0 1 Nd 136 gt Pr 136 1 0 591360 1 31E 01 2 m 0 1 1 1 1 1 Pr 136 gt stable 511370 2 84E 01 1 5 2 13E 03 1 0 1 0 0 3 56 137 gt 137 1 0 521370 2 49 00 1 5 4 20 01 1 0 1 1 0 3 Te 137 gt I 137 1 0 531370 2 45E 01 1 5 Hid 1 0 2 2 0 3 I 137 gt Xe 137 1 0 541370 3 82E 00 2 m Hd 1 0 3 3 0 Xe 137 gt Cs 137 1 0 551370 3 01E 01 5 y 1 25E 01 0 946 0 4 4 2 56E 02 Cs 137 gt Ba 137m 946 561371 2 55 00 2 m 2 58E 04 I 1 1 5 0 Ba 137m gt stable RSAC 7 2 B 26 October 2010 RSAC 7 2 Nuclear Data Library 591370 1 28E 00 3 h 0 1 1 1 0 1 Pr 137 gt Ce 137 1 0 Ce 137m La 137 9941 581371 3 44E 01 3 h 0 0 9941 1 1 1 1 Ce 137 0059 581370 9 00E 00 3 h 0 1 0 2 2 1 Ce 137 gt La 137 1 0 571370 6 00 04 5 0 1 1 3 3 1 La 137 gt stable 511380 1 30E 01 1 S 1 32 04 1 0 1 0 0 3 Sb 138 Te 138 1 0 521380 1 40 00 1 S 8 72 02 1 0 1 1 0 3 Te 138 gt 1 138 1 0 531380 6 23E 00 1 S HEE 1 0 2 2 0 1 138 gt Xe 138 1 0 541380 1 41E 01 2 m HHH 1 1 3 3 0 Xe 138 gt Cs 138 1 0 551381 2 91 00 2 m 2 48E 01 0 75 0 4 0 0 Cs 138m gt Cs 138 75 551380 3 34 01 2 3 01E 01 1 1 4 5 0 Cs 138 gt stable 571380 1 02E 11 5 y 0 1
56. 5 y 1 39E 06 1 0 3 0 2 pseudo gt Xe 129m 1 0 541291 8 88E 00 4 d 5 82E 09 1 1 3 1 0 Xe 129m gt stable 551290 3 21 01 3 h 0 1 1 4 0 1 Cs 129 gt stable RSAC 7 2 B 23 October 2010 RSAC 7 2 Nuclear Data Library 481300 2 00E 01 1 5 8 10E 04 1 0 1 0 0 3 Cd 130 gt In 130 1 0 491300 2 90E 01 1 5 7 34E 02 0 7 0 1 1 0 3 In 130 gt In 130m 1 0 491301 1 70 00 2 m 0 1 2 1 2 0 In 130m gt Sb 130 501300 3 72E 00 2 m 8 72E 01 1 0 1 3 0 5 130 gt Sb 130m 1 0 511301 6 30 00 2 3 02 01 1 1 1 4 0 Sb 130m gt stable 511300 3 95 01 2 m 2 18E 01 I 1 1 5 0 Sb 130 gt stable 530010 1 00 24 5 HHHHH 1 0 2 0 2 pseudo 530020 4 00 19 5 1 50 03 1 2 2 1 2 pseudo 530030 1 00 24 5 HB 1 0 2 2 2 pseudo 530040 3 50 19 5 4 00 03 1 1 2 3 2 pseudo gt 130 1 0 531301 8 84 00 2 1 05 04 0 83 0 2 4 0 I 130m gt 130 83 531300 1 24E 01 3 h 1 97E 04 1 1 2 5 0 1 130 gt stable 551300 2 92 01 2 m 0 I 1 4 0 1 Cs 130 gt stable 481310 1 19 01 1 5 7 70 05 1 0 1 0 0 3 Cd 131 gt In 131 1 0 491310 2 80E 01 1 S 2 44E 02 1 0 1 1 0 3 In 131 gt Sn 131 1 0 501310 5 60E 01 1 5 9 59 01 1 0 1 2 0 3 Sn 131 gt Sb 131 1 0 511310 2 30 01 2 m THREE 0 932 I I 3 0 Sb 131 Te 131 1 0 Te 131m Te 131 222 I 131 521311 3 33E 01 3 h 1 90E 01 0 778 1 4 0 778 521310 2 50E 01 2 m 1 19E 01 1
57. 5B Optional Forage Constants Tab RSAC 7 3 55 October 2010 Using RSAC 7 2 Help Usage Constants Retention Constants Field Factors Forage Constants Acute Modifiers Fraction of annual stored vegetables that are contaminated by acute release Fraction of annual fresh vegetables that are contaminated by acute release Fraction of annual stored forage that is contaminated by acute release Fraction of annual fresh forage that is contaminated by acute release Comment lt Back Comment Next gt Figure 3 72 Screen 5B Optional Acute Modifiers RSAC 7 3 56 October 2010 Using RSAC 7 2 Screen 3C Optional Ground Surface Dose Parameters Shown only if option 5 is chosen for Type of Dose Calculation on screen 2 Enter the decay time s for exponential calculations exposure time of the receptor to contaminated ground surface and the building shielding factor see Figure 3 73 Ground Surface Dose Parameters Line 7001 Help Decay Time for exponential decay function seconds If 0 RSAC defaults to program calculated time necessary to give 100 releases fi TB The time that the receptor is exposed to the contaminated ground surface following initiation of the release If gt and 1 a warning will be posted by RSAC stating that an exposure period of less than 1 year has been chosen 0 7 Building shielding factor for ground surface calculations
58. 651490 4 12E 00 3 h 0 0 0167 1 0 1 167 641490 9 28E 00 4 d 0 1 0 1 1 1 Gd 149 gt Eu 149 631490 9 3 E 01 4 d 0 1 1 1 2 1 Eu 149 gt stable 641450 2 30E 01 2 m 0 1 0 1 0 1 Gd 145 gt Eu 145 1 0 631450 5 93E 00 4 d 0 1 0 1 4 1 Eu 145 gt Sm 145 1 0 621450 3 40 02 4 0 1 0 1 5 1 Sm 145 gt Pm 145 1 0 611450 1 77E 01 5 y 0 1 1 1 6 1 Pm 145 gt stable 541460 9 37E 01 1 S 1 38 05 1 0 3 0 0 3 Xe 146 gt Cs 146 1 0 551460 3 21E 01 1 S 8 10E 03 1 0 4 1 0 3 Cs 146 gt 146 1 0 561460 2 22 00 1 S 6 68E 01 1 0 1 2 0 3 Ba 146 gt La 146 1 0 571460 6 27E 00 1 S HHH 1 0 1 3 0 3 La 146 gt Ce 146 1 0 581460 1 35 01 2 6 73 01 1 0 1 4 0 146 gt 146 1 0 591460 2 42E 01 2 m 8 54E 03 1 1 1 5 0 Pr 146 gt stable 641460 4 83E 01 4 d 0 1 0 1 0 1 Gd 146 gt Eu 146 1 0 631460 4 59 00 4 d 0 1 1 1 1 Eu 146 gt Sm 146 1 0 611460 5 53 00 5 0 0 359 0 1 0 1 Pm 146 gt Sm 146 0 359 RSAC 7 2 B 29 October 2010 RSAC 7 2 Nuclear Data Library 621460 1 03 08 5 0 1 1 1 3 1 Sm 146 gt stable 541470 2 64E 01 1 2 39E 07 1 0 1 0 0 3 147 gt Cs 147 1 0 551470 2 25 01 1 5 5 90 04 1 0 4 1 0 3 Cs 147 gt Ba 147 1 0 561470 8 94E 01 1 s 1 30E 01 1 0 1 2 0 3 Ba 147 gt La 147 1 0 571470 4 06E 00 1 s 9 37E 01 1 0 1 3 0 3 La 147 gt Ce 147 1 0 581470 5 64E 01 1 s HHH 1 0 1 4
59. 69 03 5 19 02 1 55 02 AIR IMMERSION EFFECTIVE DOSE EQUIVALENT DOWNWIND DISTANCES M ORGAN NO 1 00E 02 5 00E 02 1 Lungs 1 1 29 03 7 72 01 2 S wall 2 5 81 02 3 47 01 1 SI Wall 3 5 32 02 3 18E 01 9 ULI wall 4 5 48 02 3 27 01 9 LLI wall 5 5 39 02 3 22 01 9 Testes 6 2 68 03 1 60 02 4 Breast 7 1 82 03 1 09 02 3 BSurface 8 5 06 02 3 02 01 9 R Marrow 9 1 27 03 7 59 01 2 Thyroid 10 3 31 02 1 98 01 5 Kidney 11 5 84 02 3 49 01 1 Liver 12 5 89 02 3 52 01 1 Spleen 13 5 91 02 3 53 01 1 RSAC 7 00E 03 31E 01 04E 01 52E 00 80E 00 65E 00 80 01 26 01 04 00 27 01 93 00 05 01 05 01 06 01 5 9 00 03 1 05 01 9 41 00 8 59 00 8 85 00 8 71 00 1 05 01 1 18 01 1 67 01 1 03 01 1 07 01 9 46E 00 9 53E 00 9 56E 00 8 76E 00 8 52 00 2 30 01 1 11 01 9 97 00 8 89E 00 1 02 01 8 90E 00 8 65E 00 8 42E 00 rem 5 00E 03 30E 01 67E 01 18 01 11 01 07 01 05 01 05 01 03 01 02 01 97 00 56 00 53 00 46E400 41 00 90 00 89 00 85 00 76 00 71 00 65 00 59 00 52 00 42 00 00 CO CO LO LO LO CO CO B i i E rN 00 03 26E400 64E 01 15E 01 31 01 22 01 61 00 78 00 01 01 23 00 22 01 67E 01 72bE 01 74E 01 UPIN CO Ca NO NJ NJ NJ S
60. 691730 8 24E 00 3 h 0 1 1 1 0 1 173 gt stable 731730 3 14 00 3 h 0 1 0 1 0 1 173 gt 173 1 0 721730 2 36 01 3 h 0 1 0 1 1 1 Hf 173 gt Lu 173 1 0 711730 1 37 00 5 y 0 1 1 1 2 1 Lu 173 gt stable 711741 1 42E 02 4 d 0 0 993 0 1 0 1 Lu 174m gt Lu 174 0 993 711740 3 31E 00 3 y 0 I 1 1 1 1 Lu 174 gt stable 731740 1 14E 00 3 h 0 1 1 1 1 1 Ta 174 gt stable 691750 1 52 01 2 m 0 I 0 1 0 1 Tm 175 gt Yb 175 1 0 701750 4 19E 00 4 d 0 1 1 1 1 1 Yb 175 gt stable 731750 1 05 01 3 h 0 1 0 1 0 1 Ta 175 gt Hf 175 1 0 721750 7 00 01 4 0 1 1 1 1 1 Hf 175 gt stable 711761 3 64E 00 3 h 0 1 1 1 0 1 Lu 176m gt stable 711760 3 76 10 5 y 0 1 1 1 0 1 Lu 176 gt stable 741760 2 50 00 3 0 1 0 1 0 1 W 176 gt 176 1 0 731760 8 09 00 3 0 1 1 1 1 1 Ta 176 gt stable 701770 1 91 00 3 h 0 1 1 1 0 1 Yb 177 gt Lu 177 1 0 711771 1 60 02 4 0 0 22 0 1 1 1 Lu 177m gt Lu 177 0 22 711770 6 65E 00 4 d 0 1 1 1 2 1 Lu 177 gt stable 721771 5 14E 01 2 m 0 1 1 1 0 1 Hf 177m gt Hf 177 1 0 751770 1 40E 01 2 m 0 1 0 1 0 1 Re 177 gt W 177 1 0 741770 1 32 02 2 m 0 1 0 1 1 1 W 177 gt Ta 177 1 0 731770 5 66E 01 3 h 0 1 1 1 2 1 Ta 177 gt stable 701780 7 40 01 2 0 1 0 1 0 1 Yb 178 gt Lu 178 1 0 711780 2 84 01 2 m 0 I 1 1 1 1 Lu 178 gt stable 711781 2 3 E 01 2 m 0 I 1 1 0 1 Lu 178m stable RSAC 7 2 B 35 October 2010 RSAC 7 2 Nuclear Data Library
61. 70E 01 4 d 0 1 1 1 1 S Cm 240 gt Pu 236 1 0 Np 236b Pu 236 48 U 236 932363 2 256 01 3 h 0 0 52 10 1 0 1 52 942360 2 86 00 5 y 0 1 1 1 4 si Pu 236 gt U 232 1 0 932320 1 47 01 2 m 0 l 0 l 0 1 Np 232 gt 0 232 1 0 922320 6 89E 01 5 y 0 1 12 1 6 zi U232 Th 228 1 0 952441 2 60E 01 2 m 0 l 2 l 0 zi Am 244m gt Cm 244 1 0 952440 1 01 01 3 h 0 1 1 1 0 1 244 244 1 0 982480 3 34 02 4 d 0 1 0 1 1 l Cf 248 Cm 244 1 0 962440 1 81E 01 5 y 0 1 1 1 3 1 Cm 244 Pu 240 1 0 952400 5 08E 01 3 h 0 1 0 1 0 1 Am 240 Pu 240 1 0 942400 6 56 03 5 y 0 1 1 1 19 El 240 gt U 236 1 0 RSAC 7 2 B 40 October 2010 RSAC 7 2 Nuclear Data Library Np 236a U 236 911 932362 1 53 05 5 0 0 911 0 1 0 1 5 236 922360 2 34 07 5 y 0 1 0 1 21 1 U 236 gt Th 232 1 0 902320 1 41 10 5 0 1 0 1 22 1 Th 232 gt 228 1 0 882280 5 75 00 5 0 1 0 1 23 1 Ra 228 gt Ac 228 1 0 892280 6 15E 00 3 h 0 1 1 1 24 1 228 gt Th 228 1 0 Pa 228 Th 228 98 sk Ac 224 912280 2 20 01 3 h 0 0 98 0 1 0 1 02 902280 1 91 E00 5 y 0 1 0 1 26 1 Th 228 gt 224 1 0 224 Ra 224 909 892240 2 78E 00 3 h 0 1 0 1 0 1 sk Fr 220 091 882240 3 66 00 4 0 1 0 1 28 1 224 gt 220 1 0 862200 5 56E 01 1 5 0 1 0 3 29 1 220 gt 216 1 0 842160 1 45 01 1 S 0 1
62. 85 03 5 88 02 1 76 02 14 9 03 03 5 39 02 1 61 02 Muscle 15 8 79 03 5 25 02 1 57 02 Skin 16 2 16 04 1 30E 03 3 96 02 Brain 17 1 15 04 6 86 02 2 05 02 Thymus 18 1 03 04 6 13 02 1 84 02 U Bladd 19 9 16 03 5 47 02 1 64 02 Adrenal 20 1 05 04 6 28 02 1 88 02 Esophagu 21 9 18 03 5 49 02 1 64 02 Ovaries 22 8 93 03 5 34 02 1 60 02 Uterus 23 8 69 03 5 19 02 1 55 02 AIR IMMERSION EFFECTIVE DOSE ORDERED BY DOSE DOWNWIND DISTANCES M ORGAN NO 1 00E 02 5 00E 02 1 00 03 Skin 16 2 16E 04 1 30 03 3 96 02 BSurface 8 1 69 04 1 01 03 3 01 02 Breast 7 1 22bE 04 7 26 02 2 17 02 Brain 17 1 15 04 6 86 02 2 05 02 Thyroid 10 1 10 04 6 60 02 1 98 02 Lungs 1 1 08 04 6 43 02 1 93 02 Testes 6 1 07 04 6 41 02 1 92 02 R Marrow 9 1 06 04 6 33 02 1 89 02 Adrenal 20 1 05 04 6 28 02 1 88 02 Thymus 18 1 03 04 6 13 02 1 84 02 Spleen 13 9 85 03 5 88 02 1 76 02 Liver 12 9 82E 03 5 87 02 1 76 02 Kidney 11 9 74bE 03 5 82 02 1 74 02 S wall 2 9 69E 03 5 79 02 1 73 02 Esophagu 21 9 18 03 5 49 02 1 64 02 U Bladd 19 9 16 03 5 47 02 1 64 02 ULI wall 4 9 13 03 5 45 02 1 63 02 14 9 03 03 5 39 02 1 61 02 LLI Wall 5 8 99 03 5 37 02 1 61 02 Ovaries 22 8 93 03 5 34 02 1 60 02 SI Wall 3 8 87 03 5 30 02 1 59 02 1 15 8 79 03 5 25 02 1 57 02 Uterus 23 8
63. 93 081U S Environmental Protection Agency Washington D C 16 Eckerman K F Wolbarst A B and Richardson A C B 1988 Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation Submersion and Ingestion Federal Guidance Report No 11 EPA 5201 1 88 020 U S Environmental Protection Agency Washington D C RSAC 7 6 1 October 2010 17 Hanna S R G A Briggs P Hosker Jr 1982 Handbook on Atmospheric Diffusion DOE TIC 11223 U S Department of Energy Oak Ridge Tennessee 18 ICRP International Commission on Radiological Protection 1977 Report of the Task Group on Reference Man ICRP Publication 23 Pergamon Press Oxford Great Britain 19 ICRP 1979 Limits for Intakes of Radionuclides by Workers Part 1 ICRP Publication 30 Pergamon Press Oxford Great Britain 20 ICRP 1983 Radionuclide Transformations Energy and Intensity of Emissions ICRP Publication 38 Pergamon Press Oxford Great Britain 21 INEEL 2001 Verification and Validation of RSAC 7 2 Idaho National Engineering and Environmental Laboratory Idaho Falls Idaho 22 Islitzer N F 1965 Aerodynamic Effects of Large Reactor Complexes Upon Atmospheric Turbulence and Diffusion IDO 12041 Idaho National Engineering Laboratory Idaho Falls Idaho 23 Markee E H Jr 1967 A Parametric Study of Gaseous Plume Depletion by Ground Surface Adsorption in Proceeding of USAEC Meteorological Infor
64. Element seen 3 16 Figure 3 25 Screen 4B Element Fractionation Specification 3 17 Figure 3 26 Screen 1 Senes Title pde HER ERE EYE ORE ERE A ide Y e EE E REOS Rs 3 18 Figure 3 27 Screen 2 Radionuclide Input Options ener 3 18 Figure 3 28 Previous Inventory Deleted Warin nennen enne 3 19 Figure 3 29 Screen 3 Direct Radionuclide Input essere nennen 3 19 Figure 3 30 Screen 4A Optional Radionuclide Curie Input 3 20 Figure 3 31 Screen 4B Optional External File for Radionuclide Entry sess 3 2 Figure 3 32 Screen 5 Series Complete Notification essen enne 3 2 Figure 3 33 Reports Tab screen e iov bean OTI RTI A ede 3 2 Figure 3 34 Screen 2 Dose Summary 3 22 Figure 3 35 Screen 3 Optional Organ Selection sse 3 23 Figure 3 36 Screen 2 Dispersion 1 en enne eren enne nre 3 24 Figure 3 37 Screen 3 Optional General Meteorological Information eee 3 25 Figure 3 38 Help Inforinatton eret tee nre n Dee RR re P e e 3 25 Figure 3 39 Screen 4 Optional Dry Deposition Variables a 3 26 Figure 3 40 Screen 5 Downwind DISta ees
65. FORTRAN version of the program was prepared by L C Richardson Since 1968 RSAC has undergone substantial revision In 1973 RSAC 2 was issued by D R Wenzel Wenzel 1973 to e Add input and output options Change the inhalation dose calculations lung and gastro intestinal tract e Change the numerical integration methods for cloud gamma dose calculations Change the gamma ray buildup factor model e Revise radionuclide yields and half lives in the standard library e Refine output format for ease of reading e reduce computer memory requirements RSAC 7 1 1 October 2010 Introduction In 1982 RSAC 3 was issued Wenzel 1982 to Add a 50 mile population dose calculation Use the U S Nuclear Regulatory Commission NRC Regulatory Guide 1 109 for ingestion dose calculations Use the ICRP Lung Dynamics Model for inhalation dose calculations Use the Dolphin and Eve Gastro intestinal Tract Model Improve error detection After undergoing an extensive verification and validation RSAC 4 Wenzel 1990 was enhanced and issued in 1990 to Convert the program to FORTRAN 77 Execute RSAC 4 on a personal computer Use internal dose conversion factors from DOE EH 0071 and external dose rate conversion factors from DOE EH 0070 Add dose summary tables Add an ingestion dose model for an acute release Increase the number of organs in the dose calculations Include water immersion dose calculations Program calculated plume rise
66. Fraction of year that animals graze 3 FS Fraction of feed that is pasture when animal grazes on pasture 4 THSF Stored feed holdup time d 5 VYV Vegetable vegetation yield kg m wet weight 6 VYM Forage vegetation yield kg m dry weight 7 HUM Absolute humidity 4 2 6 8 Example Runs 1 16 2 tr 20 t Default Variable Value Name 0 4 f 43 f 90 2 NS 0 28 Y 4 9 H Optional Acute Ingestion Constants Line 4 7055 This line can be omitted however when it is not entered all acute ingestion constants are set equal to 1 RSAC 7 4 30 October 2010 Word Variable Name Description 4 2 6 9 Optional Element Selection Lines 7081 These lines are present only if word 5 NCH on the 7000 line is greater than zero Word N 7055 AFG Fraction of annual stored vegetables that are contaminated by acute release AFY Fraction of annual fresh vegetables that are contaminated by acute release AFFS Fraction of annual stored forage that is contaminated by acute release AFFF Fraction of annual fresh forage that is contaminated by acute release Default Variable Value Name 0 54 1 02 0 33 F 0 67 0 5 F 1 0 0 33 F 0 67 Crops exposed to contamination between 1 hour and 30 days Crops exposed to contamination between 30 days and 60 days Variable Name Entry Integer NUMBER 1 Integer NUMBER N Description 708X
67. Fractionate Inventory screen 2C see Figure 3 22 Fractionation Control Information Lin Help Fractionation by Group Enter Fractionations for Solids fi 0 Halogens 0 Noble Gases 0 Cesium fi 0 Ruthenium D lt Back Comment Next gt Figure 3 22 Screen 3B Optional Fractionation by Group RSAC 7 3 15 October 2010 Using RSAC 7 2 Screen 3C Optional Fractionation by Constant This screen appears only if Fractionation is by a constant 18 selected the Fractionate Inventory screen 2 see Figure 3 23 Fractionation Control Information Line 1 Xx Help Fractionation by Constant fi 0 Fractionation for entire inventory lt Back Comment Next gt Figure 3 23 Screen 3C Optional Fractionation by Constant Screen 3D Optional Fractionation by Element This screen appears only if Fractionation by element is selected on the Fractionate Inventory screen 2C see Figure 3 24 Provide the fractionation for elements that are not individual fractionated on the next screen Fractionation Control Information Line 1004 x Help Fractionation by Element Fractionation for elements not individually fractionated 0 Fractionation by element listed on next screen lt Back Comment Next gt Figure 3 24 Screen 3D Optional Fractionation by Element RSAC 7 3 16 October 2010 Using RSAC 7 2 Screen 4B Element Fractionation Specific
68. Intestine Vall Lungs Muscle Clear Selected Back Comment Next gt Figure 3 35 Screen 3 Optional Organ Selection Summary of Dose by Organ and Radionuclide Same as the previous option but radionuclides are added to the summary The organ selection optional screen 3 see Figure 3 35 15 shown with a note that it is summarized by organ and radionuclide Summary of Dose from Contribution to Effective Dose Equivalent This summary function shows in order of distance the pathway to EDE Summary of Dose from Contribution to EDE and Radionuclide Same as the previous report and sorted alphabetically by radionuclide Summary of Dose from Contribution to EDE and Radionuclide Sorted by Dose Same as the previous report except the order is from highest dose to lowest by radionuclide RSAC 7 3 23 October 2010 Using RSAC 7 2 3 2 4 5000 Series Dispersion Control Input Screen 2 Dispersion Options After the series title screen the Dispersion options screen is displayed see Figure 3 36 Select the type of dispersion control desired and click on the next button Dispersion Options Line 5000 Help C Release will be to a Building Room Back Comment Next gt Figure 3 36 Screen 2 Dispersion Options e Option 1 The release will be modeled using meteorological data Option 2 The release will be to a room If this option is selected only the inhalation pathway
69. M S F M S F M S F M S F M S F M S F M S F M S E M M F M S F M S E M S E M S F M S M F M S M 5 M 5 M 5 M M M M M M M M M 5 M 5 M M 5 October 2010 Lung Clearance Classes Lung Clearance Classes ICRP 72 Recommended Lung Clearance Classes Z Element mum E Z Element da w 7 W F 88 F M S gt e F M 89 F M S 76 Os F M S 90 Th F M s 77 Ir F M 5 91 5 78 Pt Fd 79 Au F S 93 Np F M S 80 Hg M V 94 Pu F M S TI F 95 F M S 82 E M S 96 Cm F M S 83 Bi 97 Bk M 84 F M S 98 Cf M 85 A 99 Es 87 100 M a Default lung clearance classes are underlined F Fast M Medium class and S Slow Highlighted classes are taken from ICRP 72 Table 2 recommended default absorption Type for particulate aerosol when no specific information is available b Chemical species rather than clearance classes are indicated for hydrogen and carbon c V vapor RSAC 7 2 D 11 October 2010 2 Element 1 H 4 Be 6 E 9 F 11 Na 12 Mg 13 A 14 Si 15 P 16 S 17 CI 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 37 Rb 38 Sr 39 y 40 Zi RSAC 7 2 Allowable Clearance cdm m omom m m um m d imb m Tri Classes Is lt ls lt IS lt lt lt lt lt lt lt lt lt K l
70. P2 P2 Ui ui hJ H3 4 N 00 03 TIME RECEPTOR IS EXPOSED TO CONTAMINATED SOIL BUILDING SHIELDING FACTOR RELEASE TIME FOR EXPONENTIAL DECAY FUNCTION GROUND SURFACE DOSE DOWNWIND DISTANCE GROUND SURFACE DOSE DOWNWIND DISTANCE GROUND SURFACE DOSE DOWNWIND DISTANCE GROUND SURFACE DOSE DOWNWIND DISTANCE GROUND SURFACE DOSE DOWNWIND DISTANCE GROUND SURFACE ULI wall LLI wall Testes Breast BSurface R Marrow Thyroid Kidney Liver Spleen Pancreas Muscle Skin Brain Thymus U Bladd Adrenal RSAC 7 EFFECTIVE uUi uiui ui Co uiu uiu ui un ui 00 02 41 04 14 04 03 04 10 04 22 04 92 04 68 04 09 04 50 04 55 04 19 04 16 04 17 04 84 04 75 04 84 05 10 04 08 04 21 04 86 04 1 1 35 03 18 03 12 03 L6E 03 23E403 67 E403 52E403 01 03 41 03 44E403 22E403 19 03 20 03 99E 03 94 03 38 04 L6E 03 15 03 23 03 63 03 UJ UJ UJ UJ N UJ UJ UJ UJ UJ UT UJ UJ UJ UJ UJ UJ UJ 00 02 5 1 5 00 02 00 03 00 03 00E 04 m DOSE ORDERED DOWNWIND DISTANCES M 5 00E 02 PPP 7 000E 01 CHI Q CHI Q CHI Q CHI Q CHI Q 00 03 08 03 02 03 00 03 01 03 04 03 18 03 13 03 61 03 09E 0
71. Series Complete Notification When finished with the data entry screens a completed notification appears see Figure 3 32 Click OK to return to the series main window see Figure 3 11 to review and save entered data 3 This completes data entry For the Direct Radionuclide Input Series Click the Save button to keep your work OK Figure 3 32 Screen 5 Series Complete Notification 3 2 3 3000 Series Dose Summary Option The dose summary option cannot be initialized until meteorological data 5000 Series has been entered The initiation of the dose summary option is automatically performed In addition downwind distances cannot be changed using subsequent 5000 Series input after the dose summary option has been initiated The 3000 series 1s accessed by clicking on the Reports Tab see Figure 3 33 Figure 3 33 Reports Tab screen RSAC 7 3 21 October 2010 Using RSAC 7 2 Screen 2 Dose Summary Options After the series title screen is dismissed the following selections are available see Figure 3 34 Dose Summary Options pe xj Help The dose summary option is automatically initiated when dispersion data is entered The re initiate option is used only when subsequent dose calculations in this are to be summed Enter the type of dose summary wanted after all dose calculations to be summed are entered Type of Dose Summary Calculation r Age at Intake Summary of Dose by Pathway 3 Mon
72. This users manual contains the mathematical models and operating instructions for RSAC 7 Instructions screens and examples are provided to guide the user through the functions provided by RSAC 7 This program is designed for users who are familiar with radiological dose assessment methods iii INTENTIONALLY BLANK iv CONTENTS INTRODUCTIONS titre tet bo ete bete deer tbe etu eoe Dudes duas 1 1 JJI RSAC cione rete ee a p dae brass 1 1 1 2 Summary of RSAC 7 2 Capabilities sessi ener 1 4 1 2 1 1000 Series Fission Product Calculation and Inventory Decay 1 4 1 2 2 2000 Series Direct Radionuclide Input eee 1 4 1 2 3 3000 Series Dose Summary Option sse eene 1 5 1 2 4 5000 Series Meteorological Data Input ssseeeeeeeneenen 1 5 1 2 5 6000 Series Radionuclide Inventory Decay for Printout 1 5 1 2 6 7000 Series Internal External Dose Calculations eene 1 6 1 2 7 9000 Series Cloud Gamma Dose Calculation eene 1 6 RSAC 7 2 Software 2 2 1 2 Hardware and Software Requirements 2 1 2 2 Loading Instructions and Validation of Installation sse 2 2 2 3 Point of Contact and Issues
73. X 1 2 etc Atomic number of element Example Runs Enter additional values on this and following lines until the number of elements indicated on the 7000 line have been entered RSAC 7 October 2010 Example Runs 4 2 6 10 Resuspension Control Line 7090 Enter the parameters for evaluating inhalation dose from resuspended activity Ingestion and External dose from resuspension of activity is not calculated due to its negligible contribution to CEDE Time since deposition days Exposure time to resuspended activity Linear constant in the resuspension rate function d Defaults to 4 9 E 8 d Exponential constant in the resuspension rate function d Defaults to 4 1 E 3 Variable Word Name Entry Description 1 7090 2 TSD 3 RET 4 ARL 5 BRE 4 2 6 11 Dose Calculation End Line 7999 Use this line to end the input for the calculations requested by a Dose Calculation Control Line 1 7001 Word 1 2 4 2 7 7999 Entry 9000 Series Cloud Gamma Dose Calculation Use a 9000 control line to initiate a cloud gamma dose calculation calculations are made using the finite plume model calculations are made using the semi infinite model Decay time for the leakage rate function s If zero defaults to the time necessary to give 100 see 5201 lines Variable Word Name Entry Description 1 9000 2 IT 0 1 3 T RSAC 7 4 32 October 2010 Example
74. additional words on this and following lines until the desired elements have been selected for summation 4 2 5 8 Decay End Line 6999 Use this line to end the fission product inventory decay and printout as requested by the Decay Control Line 6000 Word Entry 1 6999 RSAC 7 4 21 October 2010 Example Runs 4 2 6 7000 Series Internal External Dose Calculation Use the initial line of this series to establish the type of dose calculation to be made and the amount of output data Air immersion doses are calculated using dose rate conversion factors from Federal Guidance Report 12 Eckerman 1993 developed for a semi infinite plume Use caution to ensure that the plume size 15 large compared to the mean free path of the gamma rays If there is any doubt make cloud gamma calculations see 9000 Series in this section using both the finite plume model and the semi infinite plume model and ensure that the doses are converged 4 2 6 1 Dose Calculation Control Line 1 7000 Variable Word Name Entry Description 1 7000 2 IMOD Integer of calculation 1 Inhalation program default parameters 2 Inhalation user supplied parameters the 7003 line 3 Ingestion default to program calculated chronic parameters i Ingestion with user supplied parameters on the 7004 line 5 Ground surface 6 Air immersion see caution above Mortality risk add 10 to the above values of IMOD Morbidity risk add 20 to the above values o
75. are generated and controlled the same as for dose calculation The primary difference is that summary output controls are specific to the risk calculation function and should be calculated separate from a dose calculation RSAC 7 3 47 October 2010 Using RSAC 7 2 Morbidity Risk Calculation This screen appears when mortality risk 1s selected on the opening screen see Figure 3 64 Dose Calculation Control Line 7000 Help Type of Dose Calculation Morbidity risk Inhalation transfer parameters to be entered on later screen Morbidity risk Ingestion default to program calculated transfer parameters Morbidity risk Ingestion transfer parameters to be entered on later screen Morbidity risk Ground Surface Morbidity risk Air immersion Dose Unit Output Control for Dose Only dose summary table by organ Only total organ doses Above plus doses for each element C Above plus doses for each radionuclide Above plus dose summary table by organ rem C Sv Elements for Calculation All elements Elements will be selected Figure 3 64 Morbidity Risk Calculation screen RSAC 7 3 48 Organ choice All organs Organs will be selected lt Back Comment Next gt October 2010 Using RSAC 7 2 Screen 6 Optional Resuspension of Activity This screen appears onlyif option 7 or 8 is chosen for Type of Dose Calculation on s
76. between series and can make future editing sessions easier This comment will also appear in the generated RSAC 7 2 input file rru wm Tr P Please enter a name that will identify this Series Figure 3 26 Screen 1 Series Title Screen 2 Radionuclide Input Options Use the mouse to select the appropriate option for your problem see Figure 3 27 Radionuclide Input Options Line 2000 Help Input Option p Units curie Existing inventory is changed to input values C gram Previous inventory is deleted Becquerel Back Comment Next gt Figure 3 27 Screen 2 Radionuclide Input Options First selection Retain the previous radionuclide inventory and to add the inventory for the radionuclides selected on the subsequent screens to the previous values Second selection Retain the previous radionuclide inventory and to change the inventory for the radionuclides selected on the subsequent screens to the new values entered e Third selection Initializes the inventory You will be entering the radionuclide inventory and any previous radionuclide inventory is deleted If this option 1s selected the warning in Figure 3 28 is displayed It is very important to understand that if a 1000 series was used to generate a fission product inventory previously this option will delete the inventory from memory Use this option
77. constants Exponential Leakage Decay Line 6001 x Help Decay time for exponential decay function seconds IF RSAC will default to program calculated time neccessary to give 100 release Note however that only 1 set of leakage decay constants can be defined on the next screen if the default is chosen lt Back Comment Next gt Figure 3 51 Screen 3 Optional Exponential Leakage Decay Leakage Decay constants have been entered previously The option is now available to enter a new set of leakage decay constants that will overwrite the values previously entered Should the leakage decay constants be changed Yes Figure 3 52 Leakage Decay Constants Prompt screen RSAC 7 3 36 October 2010 Using RSAC 7 2 Screen 4 Optional Leakage Decay Constants If Yes was chosen on the Leakage Decay Constants Prompt then the screen in Figure 3 53 appears to enter linear and exponential constants s Up to eight sets of constants can be entered After entering a set of constants press the lt enter gt key to allow entry of another set Leakage Decay Constants Line 6002 Help Linear Constants in Exponential Constant in Decay Function 1 5 Decay Function l s eo Up to 8 sets of Leakage Decay Constants may be entered pe y Use leakage decay constants to calculate the radionuclide inventory decay before release to the environment Press the enter ke
78. cubic meters of the building room in which the release will occur Input the exposure time for an individual in the room on a 7001 line Variable Word Name Entry Description 1 5500 2 ROOMVOL Volume m 4 2 4 13 Meteorological Data End Line 5999 Use this line to end the meteorological data input and calculations as requested by the Meteorological Control Line 5000 Word Entry 1 5999 RSAC 7 4 17 October 2010 6000 Series 4 2 5 6000 Series Radionuclide Inventory Decay for Printout This series 15 used only to calculate the radionuclide inventory decay for printout Radionuclide decay for subsequent dose calculations must be calculated in the 1000 Series Use the Decay Control Line 6000 to initiate radionuclide inventory decay calculations Decay of either the entire radionuclide inventory or selected radionuclides can be calculated Decay times can be entered directly with Decay Times Lines 6101 or they can be established from the 5000 Series meteorological downwind data lines Individual radionuclides selected are printed If desired rather than printing the entire radionuclide inventory you can select other printout options 4 2 5 1 Decay Control Line 6000 Variable Word Name Entry Description 1 6000 2 NCH Integer Printout control 0 Decay of radionuclides in the RSAC 7 2 library will be calculated 1 radionuclides selected following 6021 line will be printed 3 ISW2 Integer Printout options 0
79. entry screen and click yes in response to the confirmation The series main window becomes active again allowing the click of the cancel button RSAC 7 3 8 October 2010 Using RSAC 7 2 3 1 6 Editing a Series To edit a series in the open file use the file summary on the main window and double click the series to edit The series main window will appear similar to Figure 3 12 Meteorological Data Input ES D xl Series Name Standard Dispersion Conditions for Transport Meteorological Data Series Input Print Contents Series Input Di ion Opti ispersion ption acides ru Release will be modeled using Meteorological D ata Meteorological Data Downwind Distances Meteorological D ata Leakage Decay Constants Average Wind Velocity 1 meters second Diffusion Control Stack Height 0 meters M Mixing Depth 400 meters Plume Standard Deviation Control Air Density 1 099 3 grams cubic meter Washout Factor liters second Plume Depletion by Dry Deposition No Downwind Distances Downwind Distance 1 100 meters Downwind Distance 2 500 meters Downwind Distance 3 1000 meters Downwind Distance 4 5000 meters Downwind Distance 5 10000 meters Leakage Decay Constants Set 1 Linear Constant 1 Exponential Constant D Diffusion Control Program calculated standard deviations of plume concentration Building width 0 meters Building Height 0 meters Plume Standard Deviation Control Standard Deviation Set Pas
80. equation used to calculate the air immersion dose is A 4X Dj x ad A 69 where D dose from radionuclide from air immersion rem A activity of radionuclide 1 decayed to the downwind location ground level atmospheric diffusion relative to the initial point of release s m dose rate conversion factor rem m Ci s RSAC 7 2 33 October 2010 atnematical Moaes A 3 5 Cloud Gamma Dose Two models are provided for calculating cloud gamma doses a finite plume model and a semi infinite model Slade 1968 The results of both models converge when the plume is relatively large and has diffused to ground level At relatively short downwind distances the semi infinite model overestimates the dose for ground level releases during stable meteorological conditions and underestimates the dose from stack releases While caution must be used when using the semi infinite model it requires little computer time for calculations A 3 5 1 Finite Plume Model Dose calculations using the finite plume model are made using the equation n oo o0 00 A 70 D X KI f fkc9E aExP 69 E G y 26 dz dy dx j l 00 00 Q where Dy the air entrance dose from the k radionuclide n number of exponential leakage approximations Kl linear approximation to leakage rate curve s f number of photons from the radionuclide released per disintegration decay constant for the radionuclide
81. exported or re exported 1 into or to a national or resident of Cuba North Korea Iran Sudan Syria or any other country to which the U S has erabargoed goods or to anyone on the U S Treasury Department s List of Specially Designated Nationals or the U S Commerce Department s Denied Persons List Unverified List Entity List Nonproliferation Sanctions or General Orders By downloading or using this computer software you are agreeing to the foregoing and you are representing and warranting that you are not located in under the control of or a national or resident of any such country or on any such list and that you acknowledge you are responsible to obtain any necessary U S government authorization to ensure compliance with U S law Figure 2 1 Installation screen acceptance notice The terms of the license must be accepted each time the software is opened in order to continue with use of the software The next step validates the installation by clicking on the RSAC QC selection under the help menu Once the selection is made acceptance of the verification is required see Figure 2 2 Verifying RSAC Installation 9 Continuing this option will automatically run all of the RSAC Examples 4 see onboard documentation to verify correct RSAC installation Each Example is executed with all parameters defaults set to the exact values stated in the documentation The resulting output is compared with the documented results Th
82. gt Br 82 976 350820 3 53E 01 3 h 5 92E 05 1 1 2 3 0 Br 82 gt stable 380820 2 54 01 4 d 0 0 99974 0 1 0 0 3 Sr 82 gt Rb 82 99974 370820 1 26 00 2 m 0 1 1 1 1 0 3 Rb 82 gt stable RSAC 7 2 B 9 October 2010 RSAC 7 2 Nuclear Data Library 370821 6 47E 00 3 h 0 1 1 1 0 1 Rb 82m gt stable 300830 8 39E 02 1 S 1 02 06 1 0 1 0 0 3 Zn 83 gt Ga 83 1 0 310830 3 10 01 1 5 9 54 04 1 0 1 1 0 3 Ga 83 gt Ge 83 1 0 320830 1 85E 00 1 s 9 74E 02 1 0 1 2 0 3 Ge 83 gt As 83 1 0 330830 1 34 01 1 S 3 22 01 0 36 1 1 3 0 3 As 83 Se 83m 64 Se 83 36 340831 7 01 01 1 5 6 40 02 1 1 1 4 0 Se 83m Br 83 1 0 340830 2 23 01 2 4 83E 02 1 0 1 5 0 Se 83 Br 83 1 0 350830 2 40 00 3 3 71 03 1 2 2 6 0 Br 83 gt Kr 83m 1 0 380830 3 24E 01 3 h 0 0 76 0 1 0 1 Sr 83 gt Rb 83 76 370830 8 62E 01 4 d 0 0 762 0 1 1 1 Rb 83 gt Kr 83m 0 762 360831 1 83E 00 3 h 3 99E 06 1 1 3 9 0 Kr 83m gt stable 310840 8 50E 02 I 5 5 49 05 1 0 1 0 0 3 Ga 84 gt Ge 84 1 0 320840 9 47 01 1 6 1 91 02 1 0 1 1 0 3 Ge 84 gt As 84 1 0 330840 4 20E 00 1 S 3 00E 01 I 0 I 2 0 3 As 84 gt Se 84 1 0 340840 3 26 00 2 m 6 62E 01 1 1 1 3 0 Se 84 Br 84 1 0 350841 6 00 00 2 m 1 90E 02 1 0 2 4 0 Br 84m gt stable 350840 3 18 01 2 m 1 80 02 1 1 2 5 0 Br 84 gt stable 370840 3 28E 01 4 d 0 1 1
83. gt stable 270610 1 65E 00 3 h 0 1 1 1 0 1 Co 61 gt stable 290610 3 33E 00 3 h 0 1 1 1 0 1 Cu 61 gt stable 270621 1 39 01 2 m 0 1 1 1 0 1 Co 62m gt stable 300620 9 26E 00 3 h 0 1 0 1 0 1 Zn 62 gt Cu 62 1 0 290620 9 67E 00 2 m 0 1 1 1 0 1 Cu 62 gt stable 280630 1 01 02 5 0 1 1 1 0 1 Ni 63 gt stable 300630 3 85E 01 2 m 0 1 1 1 0 1 Zn 63 gt stable 280650 2 52 00 3 h 0 1 1 1 0 1 Ni 65 gt stable 290640 1 27 01 3 h 0 1 1 1 0 1 Cu 64 gt stable 310650 1 52 01 2 m 0 1 0 1 0 1 Ga 65 gt Zn 65 1 0 300650 2 44E 02 4 d 0 1 1 1 1 1 Zn 65 gt stable 280660 5 46E 01 3 h 0 1 0 1 0 1 Ni 66 gt Cu 66 1 0 290660 5 12E 00 2 m 0 1 1 1 1 0 3 Cu 66 gt stable 320660 2 26 00 3 h 0 1 0 1 0 1 Ge 66 gt Ga 66 1 0 310660 9 49 00 3 h 0 1 1 1 1 1 Ga 66 gt stable 290670 6 18E 01 3 h 0 1 1 1 0 1 Cu 67 gt stable 320670 1 89E 01 2 m 0 1 0 1 0 1 Ge 67 gt Ga 67 1 0 310670 3 26E 00 4 d 0 1 1 1 1 1 Ga 67 gt stable 320680 2 71 02 4 0 1 0 1 0 1 Ge 68 gt Ga 68 1 0 310680 6 77E 01 2 m 0 1 1 1 1 1 Ga 68 gt stable 300691 1 38E 01 3 h 0 1 0 1 0 1 Zn 69m gt Zn 69 1 0 300690 5 64 01 2 m 0 1 1 1 1 1 Zn 69 gt stable 330690 1 52 01 2 m 0 1 0 1 0 1 As 69 gt Ge 69 1 0 320690 3 91E 01 3 h 0 1 1 1 1 1 Ge 69 gt stable 310700 2 11 01 2 m 0 1 1 1 0 1 Ga 70 gt stable 300711 3 96E 00 3 h 0 1 1 1 0 1 Zn 71m gt stable RSAC 7 2 B 6 October 2010 RSAC 7 2 Nuclear Data Library
84. release form by changing the soil buildup time t to t and adding a term to account for the effect of the acute release on future crops grown on the contaminated soil in subsequent years The equation for the concentration of activity in vegetation from the soil uptake pathway from an acute release is then p lila Ci djB p 1 62 1 56 where B is defined as B F gt eC A 57 and N is the integer of the number of years that crops are assumed to be grown on the contaminated soil RSAC 7 2 A 29 October 2010 Mathematical Models The total concentration in an on produce from an acute release is A 58 ct where t holdup time between harvest and consumption by either humans or livestock h When Equations A 48 A 53 and A 56 are inserted into Equation A 58 the equation for calculating the concentration of radionuclide i in and on vegetation following an acute release becomes _ e gl 1 4 1 Ath A 59 t4 tha PA where F fraction of annual crop that is contaminated by acute release When tya is set equal to zero complete harvest of the produce is assumed to occur immediately following the end of the acute release period As tng increases in magnitude Equation A 59 models continued consumption from the garden for a period of time following the end of the acute release ti
85. the harvest period is calculated using the following equation tnd A 51 e t dy 0 Integrating Equation A 51 the equation for Ar becomes Ap e Eilha 52 Ug gi Multiplying by the appropriate conversion factors and the fraction of the harvest collected during the period following the acute release period the equation for calculating the activity on produce collected during the harvest period following the acute release is _ Y ba Jj 2 ena A 53 Una Ag ta t iya RSAC 7 2 A 28 October 2010 Mathematical Models Replacing Ap using Equation A 46 and reorganizing terms the concentration on produce collected during the harvest period following the acute release is dyrF F E e ia A 54 v Y Ag t tna 1 The remaining term to be developed is for the concentration of activity in vegetation from the soil uptake pathway Only slight modifications are required in the equation used for continuous releases The equation for activity in produce pCi kg for continuous releases for the soil pathway using the subscript s to denote the soil pathway is A 55 where Biy concentration factor for root uptake of radionuclide i from soil to edible parts of crops pCi kg wet weight per pCi kg dry soil P effective surface density for soil kg m dry tj period of long term buildup for activity in soil h This equation is changed to the acute
86. the k radionuclide of the decay chain k k 1 k a E 7 Xo 1 1 i m 2 j m j i Qn the total number of atoms for the radionuclide immediately following reactor shutdown as defined above t the time after reactor shutdown s RSAC 7 2 automatically decays all radioactivity during transport from the point of release to the environment to the downwind receptor location For simplicity subsequent equations used in dose calculations do not show the operator Ek However RSAC 7 2 programming includes the buildup and decay of all progeny in each of the decay chains RSAC 7 2 A 4 October 2010 atnematical Models A 2 CONCENTRATION FUNCTION A 2 1 Atmospheric Diffusion Atmospheric diffusion at ground level for a continuous point source can be expressed using the time integrated form of the universal diffusion equation Slade 198624 Clawson et al 1989 as follows 2 42 e al A 11 Q MU 0 0 2 Qe where 56 y 0 ground level atmospheric diffusion relative to the initial point of release s m x distance downwind m y horizontal distance from plume centerline m u average windspeed at the release level m s 03 05 standard deviations of effluent concentration of the plume in the horizontal and vertical directions m h elevation ofthe point of release above the ground plane m Airborne material freely diffuses the atmosphere near the gro
87. through by the average power W for the cycle and the resultant will give the reactor operating time in seconds If operating time and MWd are known 8 64 E10 W s MWd then divide through by the operating time seconds for the cycle and the resultant will give an average reactor power in watts 4 TROP Reactor operating time at the above power s or 0 0 if word 2 4 2 1 3 Refueling Line 1002 Word Variable Name Entry Description 1 1002 2 The fraction of radionuclide inventory remaining after refueling This is the same total inventory fractionation as performed when word 2 of Fractionation Control Line 1004 15 equal to 2 The Decay Cycle Line 1003 is used to calculate the inventory decay as generated with an Inventory Control Initial Reactor Data Line 1001 or a 2000 series directly input radionuclide inventory This is the only location in the program where the radionuclide inventory decay can be calculated A 6000 series decay does not calculate an inventory decay for subsequent release If a subsequent reactor cycle 15 required then words 3 and 4 can be used to cycle the reactor 4 2 1 4 Decay Cycle Line 1003 Word Variable Name Entry Description 1 1003 2 Decay time or reactor shutdown time before this cycle s 3 POWER Reactor power for cycle W If zero TROP below is set to Zero and the next entry 1s ignored 4 Reactor operating time at above reactor power for this cycle s
88. to a maximum of eight values When you want to see all of the output data on an unshifted screen or printed on a standard 80 column page a maximum of three decay times should be entered on each 6000 Series input RSAC 7 4 20 October 2010 6000 Series 4 2 5 6 Summation Control Line 6200 This line is present only if the entire radionuclide inventory decay is calculated and it can be deleted if desired A summation of the radionuclide inventory by group solids halogens noble gases cesium and ruthenium and or by element can be printed If summation by element is requested enter the Element Summation Lines 6201 next selecting the elements to be summed Word Entry Description 1 6200 2 Group summation control word 0 No summation or printout 1 The fission product inventory for each group solids halogens noble gases cesium and ruthenium is summed and printed 3 Integer Element summation control word 0 No summation or printout 1 The radionuclide inventory is summed for each element selected by the Element Summation Lines 6201 that follow 4 2 5 7 Element Summation Lines 6201 These lines are required only if the entire radionuclide inventory decay is calculated and if the element summation option on the Summation Control Line 6200 is chosen Enter any number of these lines Word Entry Description 1 Integer 62 01 02 2 Integer Atomic number of element to be summed Enter
89. when editing downwind distances because the direct input of values and the direct input of standard deviations must correspond to downwind distances Downwind Distances Line 5101 Help Position Downwind Distance meters 1 100 Enter a maximum of eight downwind distances The valid range of downwind distances is 10 to 1 E 5 meters Diffusion for distances less than 1 E 2 m is extrapolated Press the enter key to add additional 0000 Downwind Distances oc 9 of lt Back Comment Next gt Figure 3 40 Screen 5 Downwind Distances RSAC 7 3 27 October 2010 Using RSAC 7 2 Screen 6 Leakage Decay Constants Enter linear or exponential constants s see Figure 3 41 Up to 10 sets of constants can be entered The leakage decay constants must be entered in sets of two Leakage Decay Constants Line 5201 x Help Linear Constants in Exponential Constant in Decay Function 1 5 Decay Function 1 5 eo Up to 8 sets of Leakage Decay Constants may be entered Use leakage decay constants to calculate the radionuclide inventory decay before release to the environment Press the enter key to add additional Leakage Decay Sets 1 2 3 4 5 5 7 8 p mm D D mm __ mm __ mm mm mmm mm lt Back Comment Next gt Figure 3 41 Screen 6 Leakage Decay Constants RSAC 7 3 28 October 2010 Using
90. with caution e Anew option in RSAC 7 2 is to allow input in various units Make sure the appropriate unit of input is selected RSAC 7 3 18 October 2010 Using RSAC 7 2 Warning any previous inventory will be deleted with this option Figure 3 28 Previous Inventory Deleted Warning Screen 3 Direct Radionuclide Input This screen see Figure 3 29 determines whether the radionuclides will be selected and values input directly or if an external file will be used as the source for radionuclide input Direct Radionuclide Input Help external file can be specified that contains the radionuclides and the unit content of each If an external file is not used then radionuclides selected and their values will be entered on the next screen Input Option Radionuclides will be selected on next screen An external file will be specified lt Back Samment Mext gt Figure 3 29 Screen 3 Direct Radionuclide Input RSAC 7 3 19 October 2010 Using RSAC 7 2 Screen 4A Optional Radionuclide Curie Input This screen appears only when Radionuclides will be selected on next screen is chosen on screen 3 On this screen see Figure 3 30 select the radionuclide and input the activity desired by using one of the following methods Use the 17 and to select the desired radionuclide in the list scroll through the list and select the desired radionuclide type the symbol to quickly select t
91. 0 Using RSAC 7 2 The navigation pane see Figure 3 8 on the left side of the series main window gives a brief outline of what data have been entered into the Series Meteorological Data Series 5000 Dispersion Option Meteorological Data Deposition Velocities Downwind Distances Leakage Decay Constants Diffusion Control Plume Standard Deviation Control Jet Plume Rise Parameters Figure 3 8 Navigation Pane RSAC 7 3 6 October 2010 Using RSAC 7 2 The contents pane see Figure 3 9 will display the data for the selected item in the navigation pane Thus when a subitem is selected in the navigation pane the corresponding data for that item are displayed in the contents pane This provides quick access to the specific data that are in question The Print Contents link in the upper right corner will print the current data in the contents pane to the chosen printer Series 5000 Print Contents Dispersion ption Release will be modeled using Meteorological Data Meterological D ata Average Wind Velocity 2 meters second Stack Height 76 meters Mixing Depth 380 meters Air Density 1 099E3 grams cubic meter Washout Factor 0 liters second Plume Depletion by Dry Deposition Yes Deposition Velocities Solids 0 001 meters second Halogens 0 01 meters second Noble Gases 0 meters second Cesium 0 001 meters second Ruthenium 0 001 meters second Downwind Distances Downwind Distance 1 3E3 meters Leakage D
92. 0 1 0 491201 4 62 01 1 5 1 85 04 1 1 1 5 1 48 03 In 120m gt stable 491200 3 08 00 1 S 1 85 04 1 1 1 6 1 48 03 In 120 gt stable 511203 5 76 00 4 0 1 1 1 0 1 Sb 120b gt stable 531201 5 30E 01 2 m 0 1 1 1 0 1 I 120m gt stable 511200 1 59 01 2 0 1 1 1 0 1 Sb 120 gt stable 531200 8 16E 01 2 m 0 1 1 1 0 1 1 120 gt stable 451210 2 21 01 1 5 5 34 07 1 0 1 0 0 3 Rh 121 gt Pd 121 1 0 461210 6 22E 01 1 5 2 92 04 1 0 1 1 0 3 Pd 121 gt Ag 121 1 0 471210 7 80E 01 1 5 4 80 03 1 0 1 2 0 3 Ag 121 gt Cd 121 1 0 481210 1 35E 01 1 5 1 21 02 1 0 1 3 0 3 Cd 121 gt In 121m 1 0 491211 3 88E 00 2 m 9 58E 04 1 2 1 4 0 3 In 121m gt Sn 121 1 0 491210 2 31 01 1 5 6 28 04 1 1 1 5 0 3 In 121 gt Sn 121 1 0 501211 5 50E 01 5 y 8 78E 06 1 1 1 6 0 Sn 121m gt stable 501210 2 70 01 3 h 8 75E 06 1 1 1 7 0 Sn 121 gt stable 531210 2 12E 00 3 h 0 1 1 1 0 1 1 121 gt Te 121 521211 1 54 02 4 0 886 0 1 0 1 Te 121m gt Te 121 0 886 521210 1 92E 01 4 d 0 1 1 1 2 1 Te 121 gt stable 511220 2 72E 00 4 d 0 1 1 1 0 1 Sb 122 gt stable 541220 2 01 01 3 h 0 1 0 3 0 1 Xe 122 gt 1 122 1 0 531220 3 63E 00 2 m 0 1 1 2 1 1 1 122 gt stable 451230 1 34 01 1 S 5 12E 09 1 0 1 0 0 3 Rh 123 gt Pd 123 1 0 461230 3 10 01 1 6 1 54 05 1 0 1 1 0 3 123 gt 123 1 0 471230 3 00 01 1 S 1 28 03 1 0 1 2 0 3 Ag 123 gt Cd 123 1 0 481230 2 10 00 1 5 1 39 02 1 2 1 3 0 3 123 gt In 123 1
93. 0 5 33 03 3 32 02 1 06 02 8 11 00 BSURFACE 3 4 61 03 2 86E 02 9 21 01 7 86 00 LIVER 10 3 80 03 2 36 02 7 59 01 6 49 00 ESOPHAGU 7 3 41 03 2 11 02 6 80 01 5 79E 00 THYMUS 22 3 41 03 2 11 02 6 80 01 5 79 00 ADRENALS 1 2 90 03 1 80 02 5 79 01 4 93 00 R_MARROW 16 2 84 03 1 76 02 5 67 01 4 83 00 BREAST 5 2 80 03 1 74 02 5 60 01 4 78 00 15 2 51 03 1 56 02 5 01 01 4 22 00 SPLEEN 19 2 40 03 1 49 02 4 78 01 4 05 00 OVARIES 14 2 26 03 1 40 02 4 49E 01 3 79E 00 KIDNEYS 9 2 09 03 1 30 02 4 17 01 3 54 00 MUSCLE 13 1 91E 03 1 18 02 3 81 01 3 22 00 UTERUS 25 1 70 03 1 06 02 3 39 01 2 84 00 SKIN 18 1 22 03 7 56E 01 2 43 01 2 05 00 BRAIN 4 1 06E 03 6 59 01 2 12 01 1 77 00 TESTES 21 9 64 02 5 97 01 1 92 01 1 61 00 RSAC 7 5 6 FOR ADULT AGE F OY OY H1 HH H3 H3 H3 EB NJ NJ UJ T ES E PO GJ ES E 00E 04 86E 00 20E 00 97 00 57E 01 80E 00 84 01 18 00 46 01 33 00 45 00 65 01 78 02 20 00 41 00 58 00 82 00 64E 00 68 01 52 00 79 00 01 01 18E 00 64 02 24 01 06 00 ADULT AGE 00E 04 78E 02 64 02 46 01 65 01 84 01 24 01 20E 00 64E 00 79E 00 97 00 45E400 18E 00 18E 00 86E 00 82 00 80E 00 58E 00 52 00 41 00 33 00 20 00 06 00 68 0
94. 01 1 S 2 54E 04 1 0 1 1 0 3 104 gt Zr 104 1 0 401040 1 20 00 1 S 8 01E 02 1 0 1 2 0 3 Zr 104 gt Nb 104 1 0 411040 4 80E 00 1 5 7 32 01 1 0 1 3 0 3 Nb 104 gt Mo 104 1 0 421040 6 00 01 1 5 Hi I 0 1 4 0 3 Mo 104 gt Tc 104 1 0 431040 1 83E 01 2 m 5 75E 02 I 1 1 5 0 Tc 104 gt stable 481040 5 77E 01 2 m 0 1 1 1 0 1 Cd 104 gt Ag 104 1 0 471041 3 35E 01 2 m 0 0 33 0 1 0 1 104 gt Ag 104 33 471040 6 92E 01 2 m 0 1 1 1 2 1 Ag 104 gt stable 391050 1 74 01 1 5 2 25 05 1 0 1 0 0 3 105 gt Zr 105 1 0 401050 6 00 01 1 5 1 03 02 1 0 1 1 0 3 Zr 105 gt Nb 105 1 0 411050 2 95E 00 1 S 2 03E 01 1 0 1 2 0 3 105 gt 105 1 0 421050 3 56 01 1 5 7 21 01 1 0 1 3 0 3 Mo 105 gt Tc 105 1 0 431050 7 60 00 2 m 9 69E 02 1 0 1 4 0 3 105 gt 105 1 0 441050 4 00 3 h 2 34E 03 1 1 2 5 2 9 E 01 Ru 105 gt Rh 105 1 0 451051 4 00E 01 1 5 7 30 07 0 8 0 1 6 0 Rh 105m gt Rh 105 800 451050 3 54E 01 3 h 5 20E 03 1 1 1 7 2 80E 01 Rh 105 gt stable 471050 4 13E 01 4 d 0 1 1 1 0 1 Ag 105 gt stable 401060 9 80E 01 1 S 2 48E 03 1 0 1 0 0 3 71 106 gt Nb 106 1 0 411060 1 02E 00 1 5 7 00 02 1 0 1 1 0 3 Nb 106 gt Mo 106 1 0 421060 8 40 00 1 6 2 94 01 1 0 1 2 0 3 Mo 106 gt Tc 106 1 0 431060 3 56E 01 1 5 4 98 02 1 0 1 3 0 3 Tc 106 gt Ru 106 1 0 441060 3 72E 02 4 d 1 20E 03 1 3 5 4 7 71E 01 Ru 106 gt Rh 106 1 0 450010 1 00E 23 5 y 2 70E 02 1 0 1 5 2 pseudo 450020 8 80E 16 5 y 9 00
95. 1 01 44 01 66 01 43 01 79 01 36 01 90E 00 Example Runs USING DOSE CONVERSION FACTORS FROM ICRP 72 FOR MEMBERS OF THE PUBLIC RELEASE TIME FOR EXPONENTIAL DECAY FUNCTION 5 000E 01 yr INGESTION CALCULATIONS MADE USING CODE CALCULATED CONSTANTS INGESTION CONSTANTS INTERNAL EXPOSURE TIME PERIOD CHRONIC RELEASE ADRENALS B WALL BSURFACE BRAIN BREAST COLON ESOPHAGU ET AIR KIDNEYS LIVER LLI WALL LUNGS MUSCLE OVARIES PANCREAS MARROW SI WALL SKIN SPLEEN ST WALL RSAC 7 ANNOAR OY AO PNN Ul HS JU ERO UT 1 00E 02 21 03 46 04 24 04 88 03 21 03 59 05 44E403 36 03 33 03 18 03 43 05 97 03 59 03 29 04 31 03 70 04 48 04 73 03 39 03 72 04 ON N ES 23 02 15 03 25 03 27 02 61 02 90 03 62 02 PF UJ 4 UU UJ 57E 02 93E 02 83 02 51 04 70E 02 71E 02 00 02 91 02 68 03 54 03 94 02 34E 02 68E 03 1 mio tunt 1 000E 00 s 1 500 01 YR ICRP 72 INGESTION DOSE CALCULATIONS FOR ADULT AGE INGESTION EQUIVALENT DOSE ORDERED BY ORGAN DOWNWIND DISTANCES m 5 00 02 00 03 04 02 90 02 05 03 38 02 42 01 19 03 49 02 47E402 27 02 23 02 87E403 19E 02 52 02 58 02 26 02 41 02 97
96. 1 57 01 01 01 Example Runs October 2010 INHALATION EFFECTIVE DOSE ORDERED DOWNWIND DISTANCES m 5 00E 02 ADRENALS B_WALL BSURFACE BRAIN BREAST COLON ESOPHAGU ET_AIR KIDNEYS LIVER LLI WALL LUNGS MUSCLE OVARIES PANCREAS MARROW SI WALL SKIN SPLEEN ST WALL TESTES THYMUS THYROID 011 WALL UTERUS 50 Un O0 A b I I A IS A CO UJ E UU EA UU 00 02 45 02 47 02 61 01 32 01 40 02 53 03 70E 02 12 03 05 02 90 02 08 03 29 04 55 01 13 02 26 02 41 02 18 02 22 01 20 02 07 03 82 01 70 02 31 04 01 03 52 01 24 04 01 00 15 01 86E 00 30E 00 70E 00 19 02 06 01 93 02 49 00 18 01 29 02 04 03 92 00 99 00 79E 00 12 01 97 01 56 01 44E400 63 01 99 00 06 01 13 02 28 01 28 00 25 03 u1 OY C0 PN O N N 2 N OO nN a OY IS BS Nr INJ NJ CO Ground Surface Dose Calculation OCCUPANCY FACTOR 1 000 00 90 00 88E 00 21E 01 06 00 80E 00 03 01 40 00 15 01 09 00 79E 00 14 01 57E402 90 00 25 00 50 00 81 00 30 00 43 01 39E 00 12 01 59 01 40 00 61 02 02 01 69 00 05 03 P ION NJ NJ OY OY ES O HS OY UJ IN ER BY DOSE rem 1 00 03 Q0 H3 F2
97. 1 0 2 3 0 Br 87 gt Kr 87 1 0 360870 7 63E 01 2 m 3 42E 01 1 1 3 4 5 52E 01 Kr 87 gt Rb 87 1 0 380871 2 82E 00 3 h 0 0 003 0 1 0 1 Sr 87m gt Rb 87 0 003 370870 4 81E 10 5 y 1 00E 01 1 1 1 0 7 69E 02 Rb 87 gt stable 320880 43E 01 I S 2 08E 06 I 0 I 0 0 3 Ge 88 gt As 88 1 0 330880 1 30 01 1 6 2 63E 03 I 0 1 1 0 3 As 88 gt Se 88 1 0 340880 1 53 00 1 S 3 55E 01 I 0 I 2 0 3 Se 88 Br 88 1 0 350880 1 63E 01 1 S BH 1 0 2 3 0 Br 88 gt Kr 88 1 0 360880 2 84E 00 3 h HHH 1 0 3 4 0 Kr 88 gt Rb 88 1 0 370880 1 78E 01 2 m 3 20E 02 I 1 1 5 9 20 02 Rb 88 gt stable 410880 1 45E 01 2 m 0 1 0 1 0 1 Nb 88 gt Zr 88 1 0 400880 8 34E 01 4 d 0 1 0 1 1 1 Zr 88 gt Y 88 1 0 390880 1 07E 02 4 d 0 1 1 1 2 1 Y 88 gt stable 330890 1 29E 01 1 5 2 07 04 1 0 1 0 0 3 As 89 gt Se 89 1 0 340890 4 10 01 1 S 9 27E 02 1 0 1 1 0 3 Se 89 gt Br 89 1 0 350890 4 35E 00 1 5 HHHHHH 1 0 2 2 0 3 Br 89 gt Kr 89 1 0 360890 3 15E 00 2 m Hi I 0 3 3 0 Kr 89 gt Rb 89 1 0 370890 1 52 01 2 m 1 70E 01 1 0 1 4 0 Rb 89 gt Sr 89 1 0 380890 5 05E 01 4 d 2 58 03 1 1 1 5 5 26E 02 Sr 89 gt stable 410891 1 18E 00 3 h 0 1 1 1 0 1 Nb 89m gt Zr 89 1 0 410890 1 90 00 3 0 1 0 1 0 1 Nb 89 gt Zr 89 1 0 400890 7 84E 01 3 h 0 1 1 1 2 1 71 89 gt stable 340900 5 55E 01 I S 3 22 02 1 0 1 0 0 3 Se 90 gt Br 90 1 0 350900 1 91 00 1 5 Hi 0 88 0 2 1 0 3 Br 90 gt Kr 90 88 RSAC 7 2 B 11 October 2010 RSAC 7 2 Nuclear Data Library
98. 1 0 Rh 108m gt stable 451080 1 68E 01 1 S 4 58E 05 1 1 1 0 0 Rh 108 gt stable 471081 4 38E 02 5 y 0 0 0869 0 1 0 1 Ag 108m gt Ag 108 0 089 471080 2 38E 00 2 m 0 1 1 1 1 1 Ag 108 gt stable 401090 1 39E 01 1 5 1 75 08 1 0 1 0 0 3 Zr 109 gt Nb 109 1 0 411090 1 90E 01 1 S 2 62E 05 1 0 1 1 0 3 Nb 109 gt Mo 109 1 0 421090 5 30E 01 1 S 4 05E 03 1 0 1 2 0 3 Mo 109 gt Tc 109 1 0 431090 8 70E 01 1 S 2 10E 02 1 0 1 3 0 3 Tc 109 gt Ru 109 1 0 441090 3 45E 01 1 5 1 89 02 1 1 5 4 0 3 Ru 109 gt Rh 109 1 0 451091 5 00E 01 1 S 3 17E 04 1 0 1 5 0 3 Rh 109m gt Rh 109 1 0 451090 8 00E 01 1 5 3 17 04 1 2 1 6 0 3 Rh 109 gt Pd 109 1 0 461091 4 69 00 2 1 30 06 1 1 1 7 0 Pd 109m gt Pd 109 1 0 RSAC 7 2 B 17 October 2010 RSAC 7 2 Nuclear Data Library 460020 1 00 18 5 6 00 03 1 0 1 8 2 pseudo 461090 1 37E 01 3 h 1 30 06 0 9995 0 1 9 0 Pd 109 gt Ag 109m 1 0 471091 3 96 01 1 5 1 33E 10 1 1 1 10 Ag 109m gt stable 491090 4 17E 00 3 h 0 1 0 1 0 1 In 109 gt Cd 109 1 0 481090 4 61 02 4 0 1 1 1 1 1 109 gt stable 470010 3 50 19 5 6 10 04 1 1 1 0 2 pseudo 470020 4 00 19 5 y 1 50E 02 I I I 2 pseudo 471101 2 50 02 4 4 00 09 0 0136 0 1 2 Ag 110m gt Ag 110 0136 471100 2 46E 01 1 5 3 70 09 1 1 1 3 110 gt stable 501100 4 11E 00 3 h 0
99. 1 Hg 197 gt stable 791981 2 27E 00 4 d 0 1 0 1 0 1 Au 198m gt Au 198 1 0 791980 2 70E 00 4 d 0 1 1 1 1 1 Au 198 gt stable 821980 2 40E 00 3 h 0 1 1 1 1 1 Pb 198 gt TI 198 811981 1 87 00 3 0 0 47 0 1 0 1 Tl 198m 198 47 811980 5 30E 00 3 h 0 1 1 1 2 1 T1 198 gt stable 781990 3 08E 01 2 m 0 1 0 1 0 1 Pt 199 gt Au 199 1 0 791990 3 14E 00 4 d 0 1 1 1 0 0 Au 199 gt stable 801991 4 27E 01 2 m 0 1 1 1 0 1 Hg 199m gt stable 821990 9 00E 01 2 m 0 1 0 1 0 1 Pb 199 gt TI 199 1 0 811990 7 42 00 3 0 1 1 1 1 1 T1 199 gt stable 832000 3 64E 01 2 m 0 1 0 1 0 1 1 200 gt Pb 200 1 0 822000 2 15 01 3 h 0 1 3 1 1 1 Pb 200 gt TI 200 1 0 782000 1 25E 01 3 h 0 1 1 1 0 1 Pt 200 gt Au 200 1 0 792001 1 87E 01 3 h 0 0 18 0 1 0 1 Au 200m gt Au 200 18 77192000 4 84E 01 2 m 0 1 0 1 2 1 Au 200 gt stable 812000 2 61E 01 3 h 0 1 1 1 5 1 T1 200 gt stable Po 205 Bi 205 99 96 Pb 201 842050 1 74E 00 3 h 0 0 04 4 1 0 1 04 832050 1 53 01 4 d 0 1 0 1 1 1 1 205 gt Pb 205 1 0 822050 1 73E 07 5 0 1 1 1 2 1 Pb 205 gt stable 792010 2 60E 01 2 m 0 1 1 1 0 1 Au 201 gt stable 832010 1 03E 02 2 m 0 1 0 1 0 1 1 201 gt Pb 201 1 0 822010 9 33 00 3 h 0 1 0 1 3 1 Pb 201 gt TI 201 1 0 812010 7 29 01 3 h 0 1 1 1 6 1 T1 201 gt stable 832020 1 71E 00 3 h 0 1 1 1 0 1 1 202 Pb 202 1 0 Pb 202m Pb 202 905 202 822021 3 54 00 3 h 0 0 095 1 1 0 1 095 822020 5 25 04 5 0 1 0 1 2 1 Pb 202 g
100. 1 for the variable TB This should be very useful for performing V amp V The place to look closely is for the elements with special chemical forms RSAC 7 4 23 October 2010 Example Runs Breathing rate m s for inhalation calculations If zero defaults to 3 33E 4 Use 2 66E 4 for 24 h average breathing Release to atmosphere Decay time s for the exponential decay function see Appendix A Section 2 4 Leakage Rate Function If zero defaults to the time necessary to give 100 release Release to building Time that receptor is exposed s If zero defaults to 60 s Values for the term depend the type of calculation For acute releases TB is the number of years that crops are grown on the contaminated soil TB should be 1 year for dose during the year of intake Values greater than 1 year give the dose from growing crops on the contaminated soil for the specified number of years If zero defaults to Ingestion from chronic release For chronic releases TB is the years of long term buildup of activity in the soil TB should be equal to the plant mid point of operating life y If zero defaults to 15 years Ground surface TB is the time in years that the receptor is exposed to the contaminated ground surface following initiation of the release If gt 0 and 1 a warning will be given that an exposure period of 1 year has been chosen If zero Building shielding factor for ground surface dose ca
101. 1180 1 90 00 1 s 6 38 03 1 0 1 3 0 3 Pd 118 gt Ag 118m 1 0 Ag 118m Ag 118 41 Cd 118 471181 2 00 00 1 s 3 58E 03 0 59 1 1 4 0 3 59 471180 3 76E 00 1 s 6 57E 03 1 1 5 0 3 Ag 118 gt 118 59 481180 5 03E 01 2 m 1 38 03 1 1 6 0 3 Cd 118 In 118 1 0 491181 4 45E 00 2 m 4 15E 06 1 1 1 7 0 In 118m gt stable 1 0 491180 5 00E 00 1 s 4 15E 06 1 1 1 8 0 In 118 gt stable 511181 5 00E 00 3 h 0 1 1 1 0 0 Sb 118m gt stable 451190 4 48E 01 1 s 4 17 05 1 0 1 0 0 3 Rh 119 gt Pd 119 1 0 461190 9 20E 01 1 s 3 39E 03 1 0 1 1 0 3 Pd 119 gt Ag 119 1 0 471190 2 10 00 1 s 9 26 03 1 0 1 2 0 3 Ag 119 gt Cd 119 1 0 481190 2 69 00 2 2 23 03 0 1 1 1 3 0 3 Cd 119 gt In 119m 1 0 491191 1 80E 01 2 m 1 59E 05 0 025 0 1 4 0 3 In 119m gt stable 491190 2 40E 00 2 m 4 72E 04 1 1 1 5 0 3 In 119 gt stable 501191 2 93E 02 4 d 2 65E 04 1 1 1 0 0 Sn 119m gt stable 511190 3 82 01 3 0 1 1 1 0 1 Sb 119 gt stable 441200 2 93E 01 1 s 3 07E 09 1 0 5 0 0 3 Ru 120 gt Rh 120 1 0 451200 1 62E 01 1 s 5 48E 06 1 0 1 1 0 3 Rh 120 gt Pd 120 1 0 461200 5 00E 01 1 s 1 14E 03 1 0 1 2 0 3 Pd 120 gt Ag 120 1 0 RSAC 7 2 B 20 October 2010 RSAC 7 2 Nuclear Data Library 471200 3 20E 01 1 S 7 65E 03 1 0 1 3 0 3 Ag 120 gt Cd 120 1 0 481200 5 08 01 1 5 8 71E 03 1 1 4 0 3 120 gt In 12
102. 2 1 0 571520 3 09 01 1 s 4 98 05 1 0 1 1 0 3 La 152 gt Ce 152 1 0 581520 1 40 00 1 s 1 36E 02 1 0 1 2 0 3 152 gt Pr 152 1 0 591520 3 63 00 1 s 1 08E 01 1 0 1 3 0 3 Pr 152 gt Nd 152 1 0 601520 1 14 01 2 1 45 01 1 1 1 4 0 3 Nd 152 gt Pm 152 1 0 611521 7 52 00 2 m 3 67E 03 1 0 1 5 0 3 Pm 152m gt Pm 152 1 0 611520 4 12E 00 2 m 3 67E 03 1 1 1 6 0 Pm 152 gt stable 630010 9 00 19 5 y 1 59E 04 1 0 1 0 2 pseudo gt pseudo 630020 1 00 19 5 9 70 05 1 0 1 1 2 pseudo gt Eu 152 1 0 631520 1 35E 01 5 y HH 1 1 1 2 1 91 02 Eu 152 gt stable 631521 9 31 E 00 3 h 0 0 7 0 1 0 1 Eu 152m gt Gd 152 0 72 641520 1 08E 14 5 y 0 1 1 1 1 1 Gd 152 gt stable 571530 4 37 01 1 s 1 46E 06 1 0 1 0 0 3 La 153 gt Ce 153 1 0 RSAC 7 2 B 31 October 2010 RSAC 7 2 Nuclear Data Library 581530 1 73 00 1 s 1 31E 03 1 0 1 1 0 3 Ce 153 gt Pr 153 1 0 591530 4 30E 00 1 s 3 13E 02 1 0 1 2 0 3 Pr 153 gt Nd 153 1 0 601530 3 16E 01 1 s 1 17E 01 1 0 1 3 0 3 Nd 153 gt Pm 153 611530 5 25E 00 2 m 1 65E 02 1 2 1 4 0 3 Pm 153 gt Sm 153 651530 2 34 00 4 d 0 1 4 1 0 1 Tb 153 gt Gd 153 1 0 620020 2 00 19 5 4 50 01 1 0 1 0 2 pseudo gt Sm 153 1 0 621530 4 65E 01 3 h 3 34E 04 1 1 1 7 8 98E 01 Sm 153 gt stable a E JH pseudo gt 640010 5 10 02 8 1 0 1 0 2 pseudo 6400
103. 20 1 00E 24 5 y 1 00E 03 1 0 1 1 2 pseudo gt Gd 153 1 0 641530 2 41E 02 4 d 9 70E 12 1 1 1 10 0 Gd 153 gt stable 571540 1 75 01 1 s 3 14E 08 1 0 1 0 0 3 La 154 gt Ce 154 1 0 581540 3 59E 01 1 s 8 09E 05 1 0 1 1 0 3 Ce 154 gt Pr 154 1 0 591540 2 30E 00 1 s 5 53 03 1 0 1 2 0 3 154 gt Nd 154 1 0 601540 2 59 01 1 s 5 10E 02 1 1 1 3 0 3 Nd 154 gt Pm 154 1 0 611541 2 68E 00 2 m 9 40 03 1 0 1 4 0 3 Pm 154m gt Pm 154 10 611540 1 73 00 2 m 9 40E 03 1 1 1 5 0 3 Pm 154 gt stable 630030 1 75E 17 5 y 5 20E 02 1 0 1 0 2 pseudo gt pseudo 630040 1 00 19 5 1 00 03 1 0 1 1 2 pseudo gt Eu 154 1 0 631540 8 60E 00 5 y 1 73E 06 1 1 1 2 1 29E 02 Eu 154 gt stable 651540 2 15E 01 3 h 0 1 1 1 0 1 Tb 154 gt stable 581550 7 13E 01 1 5 3 31 E 06 1 0 1 0 0 3 Ce 155 gt Pr 155 1 0 591550 1 89 00 1 s 6 84E 04 1 0 1 1 0 3 Pr 155 gt Nd 155 1 0 601550 8 90E 00 1 s 1 72E 02 1 0 1 2 0 3 Nd 155 gt Pm 155 1 0 611550 4 15 01 1 s 1 57E 02 1 0 1 3 0 3 Pm 155 gt Sm 155 1 0 621550 2 23E 01 2 m 2 59 03 1 1 1 4 0 Sm 155 gt Eu 155 1 0 630050 1 00 18 5 HHH 1 0 1 0 2 pseudo gt Eu 155 1 0 631550 4 75E 00 5 y 2 00E 08 1 1 1 6 3 66E 02 Eu 155 gt stable 671550 4 80E 01 2 m 0 1 0 1 0 1 Ho 155 gt Dy 155 1 0 661550 9 90 00 3 h 0 1 0 1 1 1 Dy 155 gt Tb 155 1 0 RSAC 7 2 B 32 October 2010 RSAC 7 2 Nuclear Data Library
104. 227 9862 892270 2 18E 01 5 y 0 0 9862 0 1 24 1 sk Fr 223 902270 1 87E 01 4 d 0 1 1 1 25 1 Th 227 gt Ra 223 1 0 872230 2 18 01 2 m 0 0 9999 0 1 0 1 Fr 223 gt Ra 223 9999 882230 1 14 01 4 d 0 I 0 1 27 1 223 gt 219 1 0 862190 3 96 00 1 S 0 1 0 3 28 1 219 gt 215 1 0 842150 1 78E 03 1 S 0 1 0 1 29 1 215 gt Pb 211 1 0 822110 3 61 E 01 2 m 0 I 3 1 30 1 Pb 211 gt Bi 211 1 0 At 211 Bi 207 0 417 Po 211 852110 7 2 E00 3 h 0 0 582 1 2 0 1 583 832070 3 29E 01 5 0 1 1 32 1 1 207 gt stable 842110 5 16 01 1 0 1 1 1 33 1 Po 211 gt TI 207 1 211 gt TI 207 99727 832110 2 14 00 m 0 0 99724 0 1 13 1 5 211 812070 4 77E 00 m 0 1 1 1 33 1 T1 207 gt stable RSAC 7 2 B 45 October 2010 Meteorological Diffusion Parameters Appendix C Meteorological Diffusion Parameters RSAC 7 2 C 1 October 2010 Meteorological Diffusion Parameters Appendix C Meteorological Diffusion Parameters meters Distance Downwind meters Figure C 1 o versus distance downwind by stability class Hilsmeier Gifford RSAC 7 2 C 2 October 2010 Meteorological Diffusion Parameters o meters Distance Downwind meters Figure C 2 o versus distance downwind by stability class Hilsmeier Gifford RSAC 7 2 C 3 October 2010 Meteorological Diffusion Parameters meters Distance Downwind meters Figure C 3 o versus distance downwind by stability class Markee
105. 27E 01 5 000E 02 9 402E 01 5 400 01 9 402 01 9 402E 01 1 000E 03 9 331bE 01 5 004 01 9 331 01 9 331 01 5 000E 03 9 129 01 4 018 01 9 129 01 9 129 01 1 000 04 8 971bE 01 3 377 01 8 971 01 8 971 01 Inhalation Dose Calculation USING DOSE CONVERSION FACTORS FROM ICRP 72 FOR MEMBERS OF THE PUBLIC RESPIRABLE FRACTION BREATHING RATE 1 000E 00 3 330E 04 mA3 s RELEASE TIME FOR EXPONENTIAL DECAY FUNCTION INTERNAL EXPOSURE TIME PERIOD 5 0 1 000E 0 00 01 LUNG ABSORPTION TYPES SELECTED TO GIVE MAXIMUM DOSE LUNG CEARANCE TYPES USED IN CALCULATIONS 0 Cs ELEMENT TYPE H F 4 Be S 6 S 9 F S Tl Na F RSAC 7 5 4 October 2010 lt lt EWN lt lt lt lt lt A X A T 0 ZX lt I IA lt lt lt lt lt u T Z G lt G 5 5 Example Runs October 2010 INHALATION DOSE CALCULATIONS FOR ADULT AGE xTTTTUUUULU INHALATION EQUIVALENT DOSE ORDERED BY ORGAN rem DOWNWIND DISTANCES e ORGAN NO 1 00 02 00 02 1 00 03 5 00 03 ADRENALS 1 2 90 03 1 80 02 5 79 01 4 93 00 B WALL 2 6 95 03 4 29 02 1 38 02 1 14 01 BSURFACE 3 4 61 03 2 86 02 9 21 01 7 86E 00 BRAIN 4 1 06E 03 6 59 01 2 12 01 1 77 00 BREAST 5 2 80 03 1 74 02 5 60 01 4 78 00 COLON 6 2 94 04 1 82 03 5 86 02 4 95 01 ESOPHAGU 7 3 41E
106. 3 11E 03 03 03 03 03 03 03 62 02 46 02 65 03 02 03 01 03 04 03 17 03 5 7 LO CO CO CO LO LO He CO LO CO LO 91 01 FOR O O0 H3 UJ Ur J ES N N OONN ES ES OY ES CO UU NJ CO ADULT 00 04 35 01 1 000 00 1 000 00 5 1 363 02 s m PLUME TRAVEL TIME 1 8 574E 04 s m PLUME TRAVEL TIME 5 2 785E 04 s m PLUME TRAVEL TIME 1 2 463 05 s m PLUME TRAVEL TIME 5 9 562E 06 s n PLUME TRAVEL TIME BY ORGAN rem 00 03 10 01 64 01 47 01 59 01 79 01 98 01 57 01 36 02 26 01 36 01 74 01 68 01 71 01 14 01 00 01 51 02 59 01 56 01 77 01 86 01 UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U1 UJ UJ UJ UJ UJ UJ UJ 00 04 41 01 23 01 17 01 21 01 29 01 73 01 58 01 11 01 47 01 50 01 27 01 25 01 26 01 05 01 99 01 45 02 22 01 20 01 28 01 69 01 3 00 02 3 1 00 04 Example Runs 5 5 5 5 5 October 2010 Esophagu 21 Ovaries 22 Uterus 23 GROUND SURFACE ORGAN NO Skin 16 BSurface 8 Testes 6 Adrenal 20 Breast 7 Thyroid 10 R Marrow 9 Lungs 1 LLI wall 5 U Bladd 19 Kidney 11 Spleen 13 Liver 12 S wall 2 Ovaries 22 Brain 17 ULI wall 4 Thymus 18 SI Wall 3 Uterus 23 Pancreas 14
107. 3 24 42 25 60 85 07 83 90 196 50 196 00 w 0 3 2 85 2 85 6 25 6 22 18 01 18 60 54 32 54 40 116 00 116 00 04 2 60 2 60 5 39 5 37 14 66 14 90 40 38 40 30 81 50 81 50 0 5 2 44 2 44 4 83 4 82 12 47 12 50 31 42 31 30 59 50 59 50 0 6 2 33 2 33 4 43 4 45 10 93 10 90 26 14 26 00 47 80 47 70 0 8 2 18 2 18 3 90 3 94 8 91 8 86 19 53 19 30 33 50 33 40 1 0 2 08 2 08 3 56 3 60 7 63 7 59 15 72 15 60 25 80 25 70 1 5 1 92 1 92 3 05 3 09 5 89 5 85 10 96 10 80 16 70 16 60 2 0 1 81 1 81 2 74 2 78 4 94 4 92 8 66 8 53 12 70 12 50 3 0 1 68 1 68 2 40 2 41 3 95 3 93 6 36 6 32 8 81 8 80 4 0 1 59 1 59 2 18 2 19 3 38 3 38 5 20 5 20 7 03 7 03 5 0 1 52 1 52 2 03 2 03 3 03 3 03 4 5 4 5 5 97 5 97 6 0 1 47 1 47 1 92 1 92 2 78 2 78 4 02 4 04 5 26 5 26 8 0 1 39 1 39 1 76 1 75 2 43 2 44 3 40 3 43 4 38 4 38 10 0 1 33 1 33 1 64 1 64 2 21 2 21 3 01 3 01 3 78 3 79 a C Calculated buildup factor b B Berger s reported buildup factor RSAC 7 2 A 37 October 2010 RSAC 7 2 Nuclear Data Library The equation used to calculate cloud gamma doses using the semi infinite model Slade 1968 is E A 75 DG 0 25 E Y where DG cloud gamma dose from radionuclide I E average gamma energy MeV Y concentration time integral Ci s m Table A 9 Photon energy groups and dose conversion factors Air entrance dose Energy Energy Energy range Conversion Dose ratio group MeV rem m y EDE air entrance 1 2 5 02 0 02 to 0 03 1 080E 14 0 1276 2 4 0E 02 0 0
108. 3 to 0 05 4 800E 15 0 3443 3 7 5E 02 0 05 to 0 10 3 360E 15 0 6228 4 2 0E 01 0 10 to 0 30 9 280E 15 0 6501 5 4 0E 01 0 30 to 0 50 2 048E 14 0 6361 6 6 5E 01 0 50 to 0 80 3 328 14 0 6528 7 9 0E 01 0 80 to 1 00 4 392E 14 0 6696 8 1 5 00 1 00 to 2 00 6 480E 14 0 6570 9 3 7E 00 2 00 to 3 70 1 243E 13 0 7739 RSAC 7 2 A 38 October 2010 RSAC 7 2 Nuclear Data Library Appendix B RSAC 7 2 Nuclear Data Library RSAC 7 2 B 1 October 2010 RSAC 7 2 Nuclear Data Library Appendix B RSAC 7 2 Nuclear Data Library This appendix contains a table of constants used to calculate radionuclide inventories and their decay The radionuclide column contains the radionuclide identification number and radionuclide name The radionuclide identification number equals the sum of the radionuclide atomic number x 10 000 mass number x 10 0 for ground state or 1 for metastable state The half life column contains the element s half life The yield column provides the percent fission yield for the radionuclide The FRACT column describes the fraction of the radionuclide decayed to the daughter indicated IDATR If FRACT 1 0 and the daughter indicated is not the next radionuclide in the library an isomer is assumed A fraction FRACT is decayed to the daughter indicated and the fraction 1 FRACT 15 decayed to the next radionuclide in the library The IDATR column contains an integer daughter indicator where 1 radioactive daughter 0 daughte
109. 400 Variable Word Name Entry Description 1 5400 2 NTRL 1 set of standard deviations of plume concentrations is entered on the Standard Deviation Lines 5401 for each downwind distance 2 Program calculated standard deviations of plume concentration A 54 0 line will immediately follow this line 3 values are input directly The remainder of this line is ignored and y Q values are read from 542X lines 3 DUMMY Building width m Smallest representative width 4 DUMMZ Building height m Smallest representative height RSAC 7 4 13 October 2010 5000 Series 4 2 4 8 Standard Deviation Lines 5401 Enter these lines only if word 2 on the Diffusion Control Line 5400 1s equal to 1 540X X 1 2 etc The horizontal dispersion standard deviation for the first downwind distance m The vertical dispersion standard deviation for the first downwind distance m Variable Word Name Entry Description 1 Integer 2 SIGY 1 3 SIGZ 1 N Enter additional sets of standard deviations on this and following lines for the additional downwind distance until values have been entered corresponding to each downwind position entered on the 5100 lines above A set of standard deviations must be entered for each downwind distance RSAC 7 4 14 October 2010 5000 Series 4 2 40 Plume Standard Deviation Control Line 5410 Enter this line only if word 2 on the Diffusion Control Line 5400 is 2 See
110. 5 kg m P Time delays tn Fresh vegetables 1 Stored vegetables 60 d Feed milk person 2 d Slaughter consumption 20 d RSAC 7 2 A 21 October 2010 atnematical Models Table A 7 RSAC 7 2 element dependent parameters used to calculate concentrations in crops Root uptake factors Transfer coefficients Translocation Forage Produce Milk Meat factor Element Biv Biv 1 H 0 0 00 0 0 00 0 0 00 0 0 00 1 0E 00 2 He 0 0E 00 0 0E 00 0 0E 00 0 0E 00 1 0E 00 3 Li 2 5E 02 1 7E 03 2 0E 02 1 0E 02 1 0E 00 4 Be 1 0E 02 6 4E 04 9 0E 07 1 0E 03 1 0 00 5 B 4 0 00 8 6E 01 1 5 03 8 0 04 1 0E 00 6 C 0 0 00 0 0 00 0 0 00 0 0 00 1 0E 00 7 N 3 0E 01 1 3E 01 2 5E 02 7 5 02 1 0 00 8 O 0 0E 00 0 0E 00 0 0E 00 0 0E 00 1 0E 00 9 F 6 0E 02 2 6E 03 1 0 03 1 5 01 1 0 00 10 0 0 00 0 0 00 0 0 00 0 0 00 1 0E 00 11 7 5 02 2 4 02 3 5E 02 5 5E 02 1 0E 00 12 Mg 1 0E 00 2 4E 01 4 0E 03 5 0E 03 1 0E 00 13 Al 4 0E 03 2 8E 04 2 0E 04 1 5E 03 1 0E 00 14 Si 3 5E 01 3 0E 02 2 0E 05 4 0E 05 1 0E 00 15 3 5E 00 1 5E 00 1 5E 02 5 5E 02 1 0 00 16 5 1 5 00 6 4E 01 1 5E 02 1 0 01 1 0 00 17 7 0E 01 3 0E 01 1 5E 02 8 0E 02 1 0E 00 18 Aa 0 0E 00 0 0E 00 0 0E 00 0 0E 00 1 0E 00 19 K 1 0E 01 2 4E 01 7 0 03 2 0 02 1 0E 00 20 Ca 3 5E 00 1 5E 01 1 0E 02 7 0 04 1 0E 00 21 Sc 6 0E 03 4 3E 04 5 0E 06 1 5 02 1 0E 00 22 Ti 5 5E 03 1 3 03 1 0 02 3 0 02 1 0E 00
111. 5 5 44E 01 Sn 125 gt Sb 125 1 0 511250 2 76E 00 5 y 1 20 04 1 0 1 6 7 62 01 Sb 125 gt Te 125m 521251 5 74E 01 4 d 1 38E 07 1 1 1 0 0 Te 125m gt stable 551250 4 67 01 2 m 0 1 0 4 0 1 Cs 125 gt Xe 125 1 0 541250 1 69 01 3 h 0 1 0 3 1 1 Xe 125 gt 1 125 1 0 531250 5 94E 01 4 d 0 1 1 2 2 1 1 125 gt stable 461260 2 87E 01 1 S 3 78E 08 1 0 1 0 0 3 Pd 126 gt Ag 126 1 0 471260 1 07 01 1 5 5 32 05 1 0 1 1 0 3 126 gt 126 1 0 481260 5 06 01 I S 8 16E 03 I 0 I 2 0 3 Cd 126 gt In 126 1 0 491260 1 64 00 1 S 4 12 02 1 0 1 3 0 3 In 126 gt Sn 126 1 0 501260 2 30 05 5 2 50 02 1 1 1 4 4 44 02 Sn 126 gt Sb 126m 1 0 510010 1 00 20 5 1 40 04 1 1 1 5 2 pseudo gt Sb 126 511261 1 92 01 2 m 5 02E 04 0 1 0 1 6 0 Sb 126m Sb 126 14 511260 1 24 01 4 9 74E 04 1 1 1 7 1 871 56 126 gt stable 531260 1 29 01 4 0 1 1 2 0 1 1 126 gt stable 561260 1 00 02 2 m 0 I 0 I 0 1 Ba 126 gt Cs 126 1 0 RSAC 7 2 B 22 October 2010 RSAC 7 2 Nuclear Data Library 551260 1 64 00 2 m 0 1 1 1 1 0 3 Cs 126 gt stable 481270 3 70E 01 1 S 4 10E 03 1 1 1 0 0 3 Cd 127 gt In 127 1 0 491271 3 67 00 1 S 2 50E 02 1 2 1 0 0 3 In 127m gt Sn 127m 1 0 491270 1 09 00 1 5 2 49E 02 1 1 1 2 0 3 In 127 gt Sn 127m 1 0 501270 2 10 00 3 h 4 72E 02 1 1 1 3 0 Sn 127 gt S
112. 5E 04 9 65E 04 Figure 3 80 Screen 2 Program Output 3 4 MetCond Subroutine The metCond subroutine uses a joint frequency distribution to define the meteorological conditions where normalized concentrations are exceeded no more than 5 and 50 of the time The metCond subroutine defines this condition on data as summarized by the National Weather Service NWS meteorological data CD 144 format The input is a joint frequency distribution of 6 windspeeds 16 wind directions and 6 stability categories Pasquill Gifford A through F for the station and time period desired The computational program is written in FORTRAN and the user interface is written in VisualBasic for DOS The joint frequency data for a significant number of locations have been provided integral to the software If your specific location is not available the data are available from the NWS and can be directly added to the library RSAC 7 3 62 October 2010 Using RSAC 7 2 Joint Frequency Meteorological Conditions A description of the facility and its reason for selection is placed in the top frame see Figure 3 81 This program reads standard STAR data obtainable from most airports and consists of a reduction of hourly readings to a form that can be evaluated in a joint frequency model The output is a metrological stability class and wind speed that represents the conditions where 9596 of the time will result in lower dose to a receptor Meteo
113. 7 30 01 2 m 0 1 0 1 0 1 Am 237 gt Pu 237 1 0 942370 4 52 01 4 0 1 0 1 0 1 Pu 237 sk U 233 Np 237 1 0 932370 2 14 06 5 0 1 0 1 18 1 237 gt 233 1 0 912330 2 70E 01 4 d 0 1 1 1 19 1 233 gt U 233 1 0 932330 3 62 01 2 m 0 1 0 1 0 1 Np 233 gt U 233 1 0 922330 1 59 05 5 0 1 0 1 21 1 U 233 gt Th 229 1 0 902290 7 34E 03 5 y 0 1 1 1 22 1 Th 229 gt Ra 225 1 0 872250 4 00E 00 2 m 0 1 0 1 0 0 3 Fr 225 gt 225 1 0 882250 1 49E 01 4 d 0 1 0 1 24 1 225 gt 225 1 0 892250 1 00 01 4 0 1 0 1 25 1 225 gt 221 1 0 872210 4 90E 00 2 m 0 1 0 1 26 1 Fr 221 gt At 217 1 0 852170 3 23E 02 1 S 0 1 0 1 27 1 At 217 gt Bi 213 1 0 1 213 gt Po 213 9784 209 832130 4 56E 01 2 m 0 0 0209 1 1 28 1 0209 842130 4 20E 06 1 S 0 1 1 1 29 1 Po 213 gt Pb 209 1 0 812090 2 20E 00 2 m 0 1 0 1 30 1 T1 209 gt Pb 209 1 0 822090 3 25 00 3 h 0 1 1 1 31 1 Pb 209 gt stable 101258 Md 258 gt Es 254 1 0 start 0 5 15 01 4 0 1 1 0 1 2N 2 982460 3 57E 01 h 0 1 2 1 0 1 Cf 246 gt Cm 242 1 0 Am 242m sk Np 238 Am 242 952421 1 41E 02 3 y 0 0 9952 0 1 0 1 9952 Am 242 Cm 242 827 242 952420 1 60E 01 h 0 0 173 14 1 1 1 173 962420 1 63E 02 d 0 1 17 1 2 1 Cm 242 gt Pu 238 1 0 992540 2 76E 02 4 d 0 1 4 1 5 1 254 gt Bk 250 1 0 Es 254m Fm 254 1 992541 3 93E 01 3 h 0 1 0 1 6 1 5 250 100254 0 3 24E 00 3 h 0 1 4 1 1 1 254 gt
114. 8 gt Eu 158 1 0 631580 4 59 01 2 m 2 58E 04 1 1 1 4 0 Eu 158 gt stable 651580 1 80E 02 5 y 0 1 1 1 0 1 Tb 158 gt stable 591590 3 14E 01 1 2 10E 09 1 0 1 0 0 3 Pr 159 gt Nd 159 1 0 601590 1 41E 00 1 S 3 08E 06 1 0 1 1 0 3 Nd 159 gt Pm 159 1 0 611590 4 23 00 1 S 1 43 04 1 0 1 2 0 3 Pm 159 gt Sm 159 1 0 621590 1 14 01 1 S 9 04E 04 1 0 1 3 0 3 Sm 159 gt Eu 159 1 0 631590 1 81 01 2 2 62 04 1 1 1 4 0 Eu 159 gt Gd 159 1 0 640030 5 00 18 5 y 2 20E 04 1 0 1 0 2 pseudo gt Gd 159 1 0 RSAC 7 2 B 33 October 2010 RSAC 7 2 Nuclear Data Library 641590 1 85E 01 3 h 1 22 05 1 1 1 6 0 Gd 159 gt stable 671590 3 31E 01 2 m 0 1 0 1 0 1 Ho 159 gt Dy 159 1 0 661590 1 44E 02 4 d 0 1 1 1 1 1 Dy 159 gt stable 651600 7 23E 01 4 d 0 1 1 1 0 1 Tb 160 gt stable 651610 6 91 E00 4 d 0 1 1 1 0 1 Tb 161 stable 681610 3 2 E 00 3 h 0 I 0 I 0 1 Er 161 gt Ho 161 1 0 671610 2 48E 00 3 h 0 1 1 1 1 1 Ho 161 gt stable 671621 6 70E 01 2 m 0 6 0 1 0 1 162 gt Ho 162 61 671620 1 50 01 2 m 0 1 1 1 1 1 Ho 162 gt stable 701620 1 89E 01 2 m 0 1 0 1 0 1 Yb 162 gt Tm 162 1 0 691620 2 43E 01 1 S 0 1 1 1 1 1 Tm 162 gt stable 671641 3 75E 01 2 m 0 1 0 1 0 1 Ho 164m gt Ho 164 1 0 671640 2 90E 01 2 m 0 1 1 1 1 1 Ho 164 gt stable 661650 2 33 00 3 h 0 I 1 1 0 1 Dy 165 gt s
115. 81 1 86E 01 2 m 0 1 0 1 0 1 Re 188m gt Re 188 1 0 751880 1 70E 01 3 h 0 1 1 1 2 1 Re 188 gt stable 781880 1 01 01 4 0 1 0 1 0 1 Pt 188 gt Ir 188 1 0 771880 4 15E 01 3 h 0 1 1 1 1 1 Ir 188 gt stable 781890 1 08E 01 3 h 0 1 0 1 0 1 189 gt Ir 189 1 0 771890 1 32 01 4 0 1 1 1 1 0 3 Ir 189 gt Ir 189m 1 0 751890 2 43E 01 3 h 0 0 241 0 1 0 1 Re 189 gt Ir 189m 0 241 711891 1 33E 02 1 S 0 1 1 1 3 1 Ir 189m gt stable 761901 9 90E 00 2 m 0 1 1 1 4 1 Os 190m gt stable 771904 3 25 00 3 h 0 0 05 0 1 0 1 Ir 190n Ir 190m0 05 711901 1 12E 00 3 h 0 1 0 1 1 1 Ir 190m gt Ir 190 1 0 771900 1 18E 01 4 d 0 1 1 1 2 1 Ir 190 gt stable 761911 1 31 01 3 h 0 1 0 1 0 1 Os 191m gt Os 191 1 0 761910 1 54 01 4 0 1 1 1 1 1 Os 191 gt stable 781910 2 80 00 4 0 1 1 1 0 1 Pt 191 gt stable RSAC 7 2 B 37 October 2010 RSAC 7 2 Nuclear Data Library 711921 1 45 00 2 m 0 1 0 1 0 1 Ir 192m gt Ir 192 1 0 771920 7 38E 01 4 d 0 1 1 1 1 1 Ir 192 gt stable 761930 3 01E 01 3 h 0 1 1 1 0 1 Os 193 gt stable 1 0 711931 1 05E 01 4 d 0 1 1 1 0 1 Ir 193m gt stable 801931 1 18E 01 3 h 0 1 2 1 0 1 Hg 193m gt Au 193 Au 193m 791931 1 77E 01 3 h 0 0 997 1 1 1 0 3 Hg 193 03 Au 193 997 801930 3 80E 00 3 h 0 1 0 1 2 1 Hg 193 gt Au 193 1 0 791930 1 76E 01 3 h 0 1 1 1 3 1 Au 193 gt Pt 1
116. 87 Fr a Default lung clearance classes are underlined F Fast M Medium class and S Slow Allowable Clearance Classes F F M F M S F M S S F M V E M E M F M 2 Element 88 Ra 89 Ac 90 Th 91 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm Lung Clearance Classes ICRP 68 Lung Clearance Classes for Maximum Element Dose Allowable Clearance b Chemical species rather than clearance classes are indicated for hydrogen and carbon c V vapor RSAC 7 2 D 9 Classes M F M S M S M S F M S M M S M M M M M M October 2010 2 Element 1 H 4 Be 6 E 9 F 11 Na 12 Mg 13 A 14 Si 15 P 16 S 17 CI 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 32 Ge 33 As 34 Se 35 Br 37 Rb 38 Sr 39 y 40 Zi RSAC 7 2 Allowable Clearance d o oom on n on o mimo m om m m umm Classes T lt lt K lt lt lt I lt lt I lt SEIS I lt amp lt NINN NINN ICRP 72 Recommended Lung Clearance Classes 2 Element 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 72 Hf 73 Ta Lung Clearance Classes Allowable Clearance Classes F
117. 8E 02 1 0 2 1 0 I 141 gt Xe 141 1 0 541410 1 73E 00 1 5 BRE 1 0 3 2 0 Xe 141 gt Cs 141 1 0 551410 2 48E 01 1 5 Hi 1 0 4 3 1 52 03 Cs 141 gt Ba 141 1 0 561410 1 83E 01 2 m Hn 1 0 1 4 0 141 gt La 141 1 0 571410 3 92 00 3 h 1 94E 02 I 0 I 5 0 La 141 Ce 141 1 0 581410 3 25 01 4 2 05 1 1 1 6 2 971 Ce 141 gt stable 621411 2 26 01 2 m 0 0 9969 0 1 0 1 Sm 141m gt Pm 141 1 0 621410 1 02 01 2 m 0 1 0 1 1 1 Sm 141 gt Pm 141 1 0 611410 2 09E 01 2 m 0 0 999 0 1 2 1 Pm 141 gt Nd 141 999 601410 2 49E 00 3 h 0 1 1 1 3 1 Nd 141 gt stable 521420 4 9 E 01 1 5 8 03E 07 I 0 1 0 0 3 Te 142 gt I 142 1 0 531420 1 96 01 1 5 2 23 03 1 0 2 1 0 I 142 gt Xe 142 1 0 541420 1 22 00 1 5 3 80 01 1 0 3 2 0 Xe 142 gt Cs 142 1 0 551420 1 68E 00 1 S BH 1 0 4 3 0 3 Cs 142 gt Ba 142 1 0 561420 1 06E 01 2 m HHH 1 0 1 4 0 142 gt 142 1 0 571420 9 11E 01 2 m 1 00E 01 1 1 1 0 0 La 142 gt stable 581420 5 00E 16 5 y 0 1 1 1 5 1 Ce 142 gt stable 591421 1 46E 01 3 h 0 0 01 0 1 0 1 Pr 142m gt 142 1 0 591420 1 91 01 3 h 0 1 1 1 1 1 Pr 142 gt stable 621420 7 25E 01 2 m 0 1 0 1 0 1 Sm 142 gt Pm 142 1 0 611420 4 05 01 1 5 0 1 1 1 1 0 3 Pm 142 gt stable 531430 3 28 01 1 5 9 08 05 1 0 2 0 0 I 143 gt Xe 143 1 0 541430 3 00E 01 1 6 5 20 02 1 0 3 1 0 Xe 143 gt Cs 143 1 0 551430 1 78E 00 1 S Minn 1 0 4 2 0 3 Cs 143 gt 143 1 0 561430 1 45E 01 1 S HHHHHH 1 0 1 3 0 3 143 gt L
118. 93 1 0 781931 4 33E 00 4 d 0 1 0 1 4 1 Pt 193m gt Pt 193 1 0 781930 5 00 01 5 y 0 1 1 1 5 1 Pt 193 gt stable 761940 6 00 00 5 y 0 1 0 1 0 1 Os 194 gt Ir 194 1 0 771940 1 93E 01 3 h 0 1 1 1 1 1 Ir 194 gt stable 771941 1 71E 02 4 d 0 1 1 1 0 1 Ir 194m gt stable 811941 3 28E 01 2 m 0 1 0 1 0 1 Tl 194m gt 194 811940 3 30 01 2 0 1 0 1 1 1 194 gt Hg 194 1 0 801940 4 44E 02 5 y 0 1 0 1 2 1 Hg 194 gt Au 194 1 0 791940 3 80 01 3 0 1 1 3 3 1 Au 194 gt stable 711951 3 80 00 3 0 0 05 0 1 0 1 Ir 195m 1Ir 195 771950 2 50E 00 3 h 0 1 1 1 1 1 Ir 195 gt stable 781951 4 01E 00 4 d 0 1 1 1 0 1 Pt 195m gt stable 821951 1 50 01 2 m 0 1 1 1 0 1 Pb 195m gt 195 1 0 791951 3 05E 01 1 S 0 1 3 1 1 1 Au 195m gt Au 195 1 0 811950 1 16E 00 3 h 0 1 1 1 2 1 195 gt Hg 195 1 0 Hg 195m Hg 195 542 801951 4 16E 01 3 h 0 0 458 1 1 3 1 Au 195 458 801950 1 05 01 3 h 0 1 0 1 4 1 Hg 195 gt Au 195 791950 1 87E 02 4 d 0 1 1 1 5 1 Au 195 gt stable 781971 9 54E 01 2 m 0 0 967 0 1 0 1 Pt 197m gt Pt 197 0 967 781970 1 99 01 3 0 1 1 1 1 1 Pt 197 gt stable 811970 2 84E 00 3 h 0 1 1 1 0 1 T1 197 gt Hg 197 801971 2 38E 01 3 h 0 0 93 0 1 0 1 Hg 197m gt Hg 197 0 93 RSAC 7 2 B 38 October 2010 RSAC 7 2 Nuclear Data Library 801970 6 41 01 3 h 0 1 1 1 2
119. 96 Cm w 83 Bi D W 97 Bk w 2 T D w 98 Cf W Y 85 W 9 Es w 7 Fr D 100 W a Default lung clearance classes are underlined D day class W week class and Y year class b Chemical species rather than clearance classes are indicated for hydrogen and carbon c V vapor RSAC 7 2 D 3 October 2010 Z Element 1 4 Be 6 C 9 F 11 Na 12 Mg 13 A 14 Si 15 P 16 S 17 CI 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 32 Ge 33 As 34 Se 35 Br 37 Rb 38 Sr 39 y 40 Zi RSAC 7 2 ICRP 30 FGR 11 Lung Clearance Classes for Maximum Element Dose Allowable Clearance Q ggo O ovg a v IZ Classes iz lz z z z z z z l lt lt lt lt lt lt IK lt IK IK D 4 7 Element 4l 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 Lung Clearance Classes Allowable Clearance Ulli o g IZ IZ Classes W x Y w w X W Y w Y w Y w Y w W W W w w Xx W Y w Y w Y w w w w w w w W W Y w X W W Y October 2010 Lung Clearance Classes ICRP 30 FGR 11 Lung Clearance Classes for Maximum Element Dose Z Element Z Element a 7 wW D 88 Ra w 75 Re D w 89 w Y w x 90 Th w Y 77 Ir D w Y 91 Pa
120. Appendix C for information on the different sets of os that are available Hilsmeier Gifford os Clawson et al 198919 should be used for desert terrains such as the INL for effluent releases from a few minutes to 15 minute in duration Markee os Clawson et al 1989 should be used for desert terrains for effluent releases from 15 to 60 minute in duration Pasquill Gifford os were developed from the Prairie Grass experiments for effluent releases from 10 to 60 minutes in duration The Pasquill Gifford os are presented in Regulatory Guide 1 145 NRC 1982 and by Slade 1968 Carefully evaluate the appropriateness of using the program generated os for effluent releases of different durations than noted above When you consider the program generated os inappropriate word 2 on the Diffusion Control Line 5400 should be set to 1 and os should be entered directly using the 540X lines Variable Word Entry Description 1 5410 2 ITS 1 Hilsmeier Gifford H G os 2 Markee os 3 Pasquill Gifford P G os 3 IWC Integer Weather class See Appendix C for Classification of Atmospheric Stability 1 A Extremely Unstable 2 B Moderately Unstable 3 C Slightly Unstable 4 D Neutral 5 E Slightly Stable 6 F Moderately Stable 7 F Fumigation SH gt O and H gt SH on a 5001 line 8 G Extremely Stable allowed only for P G os 4 IPLRS Integer Plume rise indicator 0 No plume rise ground level release 1 Jet plume rise Elevated Release Requires
121. C 7 2 is based on the modeling summarized by Hanna et al 1982 The modeling assumes the plume concentration C decreases exponentially with time A 9 October atnematical Models Eis RSAC 7 2 A 23 C t C 0 exp At where scavenging coefficient 6 time since precipitation began s A 2 3 Plume Depletion RSAC 7 2 has options for modeling plumes depletion by both dry and wet deposition Plume depletion by dry deposition 1s based on a modified version of the Chamberlain 1953 model The Chamberlain model expressed in Pasquill notation 18 C 2 Va 1 1 h Pas ool 2 te exp z ol dx E where fraction of plume depleted by dry deposition Because the Chamberlain model is known to indicate over depletion of the plume under stable meteorological conditions an empirical modification has been made based upon plume depletion measurements made of releases of activity as evaluated at the INL Markee 1967 The modified Chamberlain equation is as follows Fay In x C wc A 25 Values for the constant Cwc are presented in Table A 2 October 2010 Mathematical Models Table A 2 Values for the constant Cwc Weather Cwc Class A 0 B 0 0 0 0 0999 0 198 0 198 When it is assumed that the rain falls completely through the plume the fraction of the plume depleted Fy is given by 1 exp i 2no u 26 T
122. CRP 72 Public Inhalation Dose rsac Input Simulated Reactor Operation with Inhalation Dose Calculated Using ICRP 72 ICRP 72 is the basis for the inhalation dose calculation Reactor Operation for 100 Mw days 1000 1001 1 0 0 1003 0 00 07 8640000 Fractionation of Radionuclide Inventory 2000 1 1 U 235 10000 U 238 1 e7 2999 Standard Dispersion Conditions for Transport 5001 1 0 400 1 099E3 0 1 5002 0 001 0 01 0 0 001 0 001 5101 100 500 1000 5000 10000 5201 1 0 5400 2 0 0 5410 3 5 0 0 5999 Inhalation Dose Using ICRP 72 Adult Public Dose Conversion Factors 7000 2 2 1 0 1 6 7001 3 33E 04 0 0 0 1 7003 0 7999 Ground Surface 7000 5 2 1 0 1 0 7001 0 0 1 0 7 1 7999 Air Immersion 7000 6 2 1 0 1 0 Ingestion Calculation 7000 4 2 1 0 1 6 Rsac7 exe RSAC 7 INPUT 10 28 2010 7001 0 0 15 0 7004 0 0 0 7 7999 Cloud Gamma 9000 0 0 Summary of Dose by Pathway 3000 2 6 10000 RSAC 7 5 3 09 58 October 2010 Example Runs Fission Product calculation RADIONUCLIDE INVENTORY HAS BEEN DECAYED FOR 0 000 00 SECONDS THE REACTOR HAS OPERATED AT 1 000 07 WATTS FOR 8 640E 06 SECONDS BURNUP 1 000E 03 MWD TOTAL RADIONUCLIDE REMAINING 1 727 18 D S OR 4 668 07 CI Fission Product calculation FRACTIONATION BY ELEMENT GROUP SOLIDS 1 000E 01 HALOGENS 2 500E 01 CESIUM 1 000E 01 RUTHENIUM 1 000E 01
123. Deviation Set program calculated plume rise C Hillsmeier Gifford H G Jet Plume Rise C Markee Buoyant Plume Rise Pasqill Gifford P G Weather Class A Extremely Unstable B Moderately Unstable C Slightly Unstable D Neutral E Slightly Stable F Moderately Stable F Extremely Stable Fumigation Available if Stack Height gt 0 and Mixing Depth gt Stack Height Line 5001 E e e Extremely Stable allowed only for P G standard deviations 0 Plume Meander f zero defaults to 1 lt Back Comment Next gt Figure 3 45 Screen 10 Optional Plume Standard Deviation Control RSAC 7 3 32 October 2010 Using RSAC 7 2 Screen 10C Optional Direct Chi Q Input This screen appears only if option 3 was chosen on screen 9 see Figure 3 46 Direct Chi Q Input Line 5421 Help Enter values for Downwind Distances Dose calculations using finite plume model around surface and ingestions are not allowed when Chi G is input directly Chi Q Values Downwind Distance m Direct Input 100 500 1000 mmm 5000 10000 lt Comment Next gt Figure 3 46 Screen 10C Optional Direct Chi Q Input Screen 11A Optional Jet Plume Rise Parameters This screen appears only if Jet Plume Rise was chosen on P ume Standard Deviation Control screen 10B see Figure 3 47 Jet Plume Rise Parameters
124. E 04 1 0 1 6 2 pseudo RSAC 7 2 B 16 October 2010 RSAC 7 2 Nuclear Data Library 451061 1 31 02 2 m 3 40E 03 1 1 1 7 0 Rh 106m gt stable 1 0 451060 3 01E 01 1 S 8 30E 03 0 7519 1 1 8 0 Rh 106 gt stable 391070 1 05 01 1 S 3 74E 08 1 0 1 0 0 3 Y 107 gt Zr 107 1 0 401070 2 49E 01 1 5 1 19 04 1 0 1 1 0 3 Zr 107 gt Nb 107 1 0 411070 3 30E 01 1 S 1 14 02 1 0 1 2 0 3 Nb 107 gt Mo 107 1 0 421070 3 50 00 1 5 1 24 01 1 0 1 3 0 3 Mo 107 gt Tc 107 1 0 431070 2 12E 01 1 S 5 38E 02 1 0 1 4 0 3 107 gt 107 1 0 441070 3 75 00 2 m 4 94E 06 1 0 1 5 0 3 Ru 107 gt Rh 107 1 0 451070 2 17 01 2 m 7 24E 06 1 2 1 6 0 Rh 107 gt Pd 107 1 0 460010 1 10 21 5 2 10 05 1 0 1 7 2 pseudo 461071 2 13 01 1 S 7 64E 10 1 0 1 8 0 Pd 107m gt Pd 107 1 0 461070 6 50 06 5 y 7 40E 10 1 1 1 9 2 816 Pd 107 gt stable 481070 6 50 00 3 0 1 1 1 0 1 Cd 107 gt stable 401080 4 08E 01 1 S 2 64E 06 1 0 1 0 0 3 Zr 108 gt Nb 108 1 0 411080 1 93E 01 1 S 8 49E 04 1 0 1 1 0 3 108 gt 108 1 0 421080 1 09 00 1 5 3 27 02 1 0 1 2 0 3 Mo 108 gt Tc 108 1 0 431080 5 17E 00 1 S 4 64E 02 1 0 1 3 0 3 Tc 108 gt Ru 108 1 0 441080 4 55 00 2 m 1 15 02 1 2 5 4 0 Ru 108 gt Rh 108 1 0 450030 1 00 19 5 2 00 05 1 0 1 0 2 pseudo 451081 6 00 00 2 4 58 05 1 1 1
125. En e Amta n A 46 Assuming that produce collection 1s constant during the acute release period t and during the harvest duration time period following the acute release tra the fraction of the uptake that is collected during the acute release period is la an A 47 The concentration in produce collected during the acute release period is then Cip TE 5 IE A 48 where r fraction of deposited activity retained on foliage fraction of deposited radioactivity translocated from plant surface to edible portion of crop F fraction of annual crop that is contaminated by the acute release Y agricultural productivity yield kg m RSAC 7 2 A 27 October 2010 Mathematical Models Inserting Equation A 46 into Equation A 48 the equation for the concentration in produce collected during the acute release period becomes v d rF F t V 2 i aa Hl Rita ip a gi ta 222 49 By assuming that the deposition is constant during the acute release period the equation for calculating the activity on vegetation at the end of the release period is the same as that for the calculation of Ap The activity on vegetation at any time following the acute release is 50 Ar Ap e B where activity on vegetation at any time following the acute release t hours following the end of the acute release period The average activity on vegetation pCi m collected during
126. Figure 3 1 RSAC main window Some of the most commonly used components are shown in Figure 3 2 AAU S al x ehh ee Figure 3 2 Toolbar display RSAC 7 3 1 October 2010 Using RSAC 7 2 The toolbar provides shortcuts for e Opening files e Printing e Using the cut copy paste insert and delete series e Running the currently open file with RSAC The Add a Series menu see Figure 3 3 allows selecting a series to add to the open file It works similar to a tab control Click on General to add a series or Reports to generate a report Note Some series may be disabled until its prerequisites are met Figure 3 3 Add a Series menu display The file summary see Figure 3 4 displays the following e Quick view of what series are in the file e Cut Copy Paste Insert and Delete series option to open a series in edit mode RSAC 7 3 2 October 2010 Using RSAC 7 2 Reactor Operation for 100 days Fission Product Inventory Calculation Fractionation of Radionuclide Inventory Fission Product Inventory Calculation Adding in the Beginning of Life Uranium Inventory in grams Direct Radionuclide Input Standard Dispersion Conditions for Transport Meteorological Data Input Report of Radionuclide Inventory as a function of downwind distance Radionuclide Inventory Decay for Printout Inhalation Dose Using ICRP 72 Adult Public Dose Conversion Factors Internal External Dose Calculation Summar
127. INL EXT 09 15275 Revision 1 Radiological Safety Analysis Computer RSAC Program Version 7 2 Users Manual Bradley J Schrader October 2010 79 The INL is a U S Department of Energy National Laboratory operated by Battelle Energy Alliance Idaho National Laboratory DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U S Government Neither the u s government nor any agency thereof nor any of their employees makes any warranty expressed or implied or assumes any legal liability or responsibility for the accuracy completeness or usefulness of any information apparatus product or process disclosed or represents that its use would not infringe privately owned rights References herein to any specific commercial product process or service by trade name trade mark manufacturer or otherwise does not necessarily constitute or imply its endorsement recommendation or favoring by the U S Government or any agency thereof The views and opinions of authors expressed herein do not necessarily state or reflect those of the U S government or any agency thereof DISCLAIMER NOTICE This computer software was prepared by Battelle Energy Alliance LLC hereinafter the Contractor under Contract No DE ACO7 051D14517 with the United States U S Department of Energy DOE NEITHER THE UNITED STATES GOVERNMENT NOR DOE NOR THE CONTRACTOR MAKE ANY WARRANTY EXPRESSED OR IMPLIED
128. J SJ SJ SJ SJ SJ SJ BO H NJ NJ NJ SJ UJ OY PO NJ SJ SJ TL U Ila HB 00 U HA ER UO 00 04 83 00 54 00 31 00 38 00 34E 00 83E 00 20E 00 63 00 76 00 90 00 55 00 57 00 58 00 36E 00 29 00 39 00 00 00 69 00 39 00 76 00 39 00 32 00 26 00 00 04 39 00 63 00 20 00 00 00 90 00 83 00 83 00 76E 00 76E 00 69 00 58E 00 57 00 55E400 54E 00 39E 00 39E 00 38E 00 36E 00 34E 00 32E 00 31E 00 29 00 26 00 00 04 Example Runs October 2010 lt Muscle Skin Brain Thymus U Bladd Adrenal Esophagu Ovaries Uterus EXT EDE 42E 02 27E 02 16E 02 89E 02 16E 02 50E 02 31E 02 51E 02 23 03 21 02 10 04 OU F2 UJ UJ UJ Ingestion Dose Calculation 23 01 15 01 30 01 12 01 68 01 28 01 77 01 29 01 34E402 11 01 58 02 69 00 43E 00 96E 00 23E 01 10E 01 83E 00 13E 01 86E 00 00E 01 33E 00 97E 02 NN Ci 25 01 11 01 30 01 69 01 98 01 33E 01 14 01 34 01 16 00 05 01 07 01 42 01 37 01 39 02 80 01 6
129. Line 5411 B xi Help Internal Stack Diameter meters Restoration Acceleration default 8 7E 4 s 2 for a weak inversion default 1 75E 3 s 2 for a strong inversion Effluent velocity of gases from the stack meters second lt Back Comment Next gt Figure 3 47 Screen 11A Optional Jet Plume Rise Parameters RSAC 7 3 33 October 2010 Using RSAC 7 2 Screen 11B Optional Buoyant Plume Rise Parameters This screen appears only if Buoyant Plume Rise was chosen on Plume Standard Deviation Control screen 10B see Figure 3 48 Buoyant Plume Rise Parameters Line 5411 Xx Help Internal stack diameter meters Stack gases heat emissions cal s for bouyant plume rise lt Back Comment Next gt Figure 3 48 Screen 11B Optional Buoyant Plume Rise Parameters 3 2 5 6000 Series Radionuclide Inventory Decay and Printout To append a new 6000 series in the current file click on the Reports tab see Figure 3 49 Add a Series Figure 3 49 Reports Tab screen RSAC 7 3 34 October 2010 Using RSAC 7 2 Screen 2 Radionuclide Decay Control This screen is shown after the series title screen for the 6000 series see Figure 3 50 In this data entry screen sequence the following information must be provided e or selected radionuclide decay will be calculated e If inventories are to be printed e Which units of measure e Ifthe exponential leakage decay option
130. N INGESTION GROUND SUR AIR IMMERS TOTAL SUBTOTALS 3 35 01 4 82 02 3 56 01 2 90 00 5 54 02 FINITE MODEL CLOUD GAMMA 1 32 00 TOTAL 5 55 02 Execution Time 2 80 00 SECONDS RSAC 7 5 12 October 2010 6 REFERENCES 1 American National Standards Institute Inc American Nuclear Society ANSI ANS 1987 American National Standard Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear Industry ANSI ANS 10 4 2 American Society of Mechanical Engineers ASME 2000 Quality Assurance Program Requirements for Nuclear Facility Applications ASME NQA 1 2000 3 Abramowitz M and I A Stegum eds 1964 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables AMS 55 pp 887 890 4 Baes C F III R D Sharp A L Sjoreen R W Shor 1984 A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture ORNL 5786 Oak Ridge National Laboratory Oak Ridge Tennessee 5 Berger M J and R G Jaeger 1968 Engineering Compendium on Radiation Shielding Vol I New York Springer Verlag Inc p 218 6 Boone F W Y C Ng J M Palms 1981 Terrestrial Pathways of Radionuclide Particulates Health Physics 41 pp 735 747 7 Briggs 1969 Plume Rise TID 25075 U S Atomic Energy Commission Oak Ridge Tennessee 8 Chamberlain A C 1953 Aspects of Travel and De
131. No individual radionuclide inventories are printed 1 Print all fission products and any activation products actinides and daughters of actinides with positive values 1 Same as 1 option except suppress short lived fission products that have no available dose conversion factors 2 Print inventory of radionuclides that have positive values at or following the first requested decay time d ISW Integer Units control word 0 Curies 1 MeV s gamma only 2 Grams 5 LEAK Integer Exponential leakage option 0 No exponential leakage corrections are included 1 Correction for exponential leakage decay included 6001 line must immediately follow this line This option provides an inventory of the radionuclides reaching a downwind location RSAC 7 4 18 October 2010 6000 following a release that varies exponentially as a function of time 4 2 5 2 Decay Time for Leakage Rate Function 6001 Use this line only when LEAK on the 6000 line is equal to 1 Variable Word Name Entry Description 1 6001 2 T Decay time s for the exponential decay function If zero defaults to the time necessary to give 100 release 4 2 5 3 Leakage Decay Constants 6002 Use these lines only when the exponential leakage option is requested 1 LEAK 1 You can omit these lines if leak rate exponentials have been previously entered with 5201 lines Variable Word Name Entry Description 1 Integer 60XX XX 02 03 etc
132. OR ASSUMES ANY LIABILITY OR RESPONSIBILITY FOR THE USE ACCURACY COMPLETENESS OR USEFULNESS OR ANY INFORMATION APPARATUS PRODUCT OR PROCESS DISOCLOSED OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS EXPORT RESTRICTIONS The provider of this computer software and its employees and its agents are subject to U S export control laws that prohibit or restrict i transactions with certain parties and ii the type and level of technologies and services that may be exported You agree to comply fully with all laws and regulations of the United States and other countries Export Laws to assure that neither this computer software nor any direct products thereof are 1 exported directly or indirectly in violation of Export Laws or 2 are used for any purpose prohibited by Export Laws including without limitation nuclear chemical or biological weapons proliferation None of this computer software or underlying information or technology may be downloaded or otherwise exported or re exported i into or to a national or resident of Cuba North Korea Iran Sudan Syria or any other country to which the U S has embargoed goods or ii to anyone on the U S Treasury Department s List of Specially Designated Nationals or the U S Commerce Department s Denied Persons List Unverified List Entity List Nonproliferation Sanctions or General Orders By downloading or using this computer software you are agreeing to the foregoing
133. ORS FROM ICRP 72 FOR MEMBERS OF THE PUBLIC FOR ADULT INTAKE AGE PATHWAY CONTRIBUTION TO THE EFFECTIVE DOSE rem DOWNWIND DISTANCE 1 00 02 m NUCLIDE INHALATION INGESTION GROUND SUR AIR IMMERS TOTAL SUBTOTALS 5 24 04 7 36 05 5 65 04 1 10 04 8 56E 05 FINITE MODEL CLOUD GAMMA 3 93 02 TOTAL 8 56E 05 USING DOSE CONVERSION FACTORS FROM ICRP 72 FOR MEMBERS OF THE PUBLIC FOR ADULT INTAKE AGE PATHWAY CONTRIBUTION TO THE EFFECTIVE DOSE rem DOWNWIND DISTANCE 5 00 02 m NUCLIDE INHALATION INGESTION GROUND SUR AIR IMMERS TOTAL SUBTOTALS 3 25 03 4 57 04 3 50 03 6 58 02 5 31 04 FINITE MODEL CLOUD GAMMA 6 13 01 TOTAL 5 32 04 USING DOSE CONVERSION FACTORS FROM ICRP 72 FOR MEMBERS OF THE PUBLIC FOR ADULT INTAKE AGE PATHWAY CONTRIBUTION TO THE EFFECTIVE DOSE rem DOWNWIND DISTANCE 1 00 03 m NUCLIDE INHALATION INGESTION GROUND SUR AIR IMMERS TOTAL SUBTOTALS 1 05 03 1 47 04 1 12 03 1 97 02 1 71 04 FINITE MODEL CLOUD GAMMA 2 91E 01 TOTAL 1 71 04 USING DOSE CONVERSION FACTORS FROM ICRP 72 FOR MEMBERS OF THE PUBLIC FOR ADULT INTAKE AGE PATHWAY CONTRIBUTION TO THE EFFECTIVE DOSE rem DOWNWIND DISTANCE 5 00 03 m NUCLIDE INHALATION INGESTION GROUND SUR IMMERS TOTAL SUBTOTALS 8 91 01 1 27 03 9 52 01 1 07 01 1 46E 03 FINITE MODEL CLOUD GAMMA 3 87 00 TOTAL 1 47E 03 PATHWAY CONTRIBUTION TO THE EFFECTIVE DOSE DOWNWIND DISTANCE 1 00 04 m NUCLIDE INHALATIO
134. RSAC 7 2 Screen 7 Crosswind Distance Select Yes if you want to enter crosswind distances otherwise select No see Figure 3 42 If yes is selected the input fields will become active allowing up to 15 crosswind distances to be entered Crosswind Distance Line 5301 Help Crosswind distances are optional and are entered only if desired Up to 15 crosswind distances may be entered Crosswind Distance s Crosswind distances in meters Note Values output are for cloud gamma only Press the enter key to add additional Crosswind Distances lt Back Comment Next gt Figure 3 42 Screen 7 Crosswind Distance RSAC 7 3 29 October 2010 Using RSAC 7 2 Screen 7 Diffusion Coefficient Control The following options are available for diffusion coefficient control see Figure 3 43 foption 1 is selected then the Coefficient of Standard Deviation screen will appear next Enter the values for and Standard deviations must be entered in sets of two e Ifoption 2 is selected then the Plume Standard Deviation Control screen will appear next Enter the type of sigma weather class and plume rise indicator on a sequence of input screens e Ifoption3 is selected then the Direct y Q Input screen will appear next Enter the y Q associated with the downwind distance NOTE Building wake control is only available if stack height was equal to zero on screen 3 see Figure 3 43 Diffusion Cont
135. Runs 5 EXAMPLE RSAC 7 2 RUNS RSAC 7 2 has 20 examples that are useful in helping the user learn how to run RSAC 7 These examples are also used to validate the installation The examples available are as follows 1 Direct Input and Decay of Nuclides This example shows the various ways nuclides can be input and decayed for output viewing 2 Simulated Reactor Operation with Release During Operation This example generates a fission product inventory from a simulated reactor operation of 50 MW for 50 days In addition the simulation of a fuel failure fractionates the calculated inventory The decay and output of two scenarios is shown The first scenario is for the activity retained in the reactor and the second is the activity released from the reactor 3 Calculation of Chi Q with modifiers This example is a demonstration of the various conditions that can be modeled to establish Chi Q values 4 Reactor Operation Transport and Output of Source Term This example combines the techniques of Examples 1 3 then outputs the transported source term using the report function 5 Dose Calculation Using FGR 11 This example evaluates all the pathways using the same dose conversion factors used in RSAC 6 6 Simulated Reactor Operation ICRP 68 Worker Inhalation Dose This example evaluates all the pathways with the exception of ingestion using the facility worker dose conversion factors from ICRP 68 7 Simulated Reactor Operation ICRP 72 Public I
136. SAC 7 2 The ICRP 26 weighting factors are presented in Table A 3 The committed effective dose equivalent CEDE is then the sum of the WCDEs for the organs and tissues listed in Table A 3 RSAC 7 2 calculates CEDE for the default 1 um activity median aerodynamic diameter AMAD Because of uncertainties in the ICRP 30 modeling all final doses calculated should be reported to only one significant digit RSAC 7 2 A 15 October 2010 Mathematical Models Table A 3 Weighting factors for stochastic risks Organ or Weighting tissue factor Gonads 0 25 Breast 0 15 Red bone 0 12 marrow Lungs 0 12 Thyroid 0 03 Bone 0 03 surfaces Remainder 0 30 a weighting factor of 0 06 is applied to each of the five organs or tissues of the remaining organs receiving the greatest dose equivalents For particle sizes other than the default 1 um AMAD DCFs are corrected according to deposition in the three regions of the respiratory system the nasal passage NP the trachea and bronchial tree TB and the pulmonary parenchyma P DCFs are modified according to the following equation DCH Diis A 36 Dyp 1 um 1 im where ll fyr frg and fp fraction of the CDE in the reference tissue resulting from deposition in the N P T B and P regions respectively as shown in Table A 4 Dyr deposition probabilities in the respiratory regions as a function of AMAD as sh
137. This quantity 15 set to zero 1f reactor power above 15 Zero 4 2 1 5 Fractionation Control Line 1004 Use this line to release a fraction of the radionuclide inventory and simulate removal of activity by cleanup systems such as HEPA filters Use the control word on this line to determine whether the type of fractionation is by group by a constant value or by element Specify fractionation by the following RSAC 7 4 3 October 2010 2000 Series groups solids halogens noble gases cesium and ruthenium Enter the fractionation value for each group on this line If the constant fractionation option is used the entire radionuclide inventory is fractionated by the next value entered on this line If fractionation by element is chosen enter a fractionation value for those elements not described by an Element Fractionation Lines 1101 on this line Enter the Element Fractionation Lines 1101 describing the fractionation of each desired element Word Entry Description 1 1004 2 1 Fractionation by group as specified by the next five words Fractionation for solids 4 Fractionation for halogens 5 Fractionation for noble gases 6 Fractionation for cesium 7 Fractionation for ruthenium 2 Fractionation is by a constant specified by the next word e FRAC Fractionation for entire radionuclide inventory c 1 Fractionation by element Following lines will be Element Fractionation Lines 1101 3 FRAC Fractionation for eleme
138. ULATIONS MADE USING THE FINITE MODEL DOWNWIND DISTANCE 1 000E 02 M RSAC 7 5 11 00E 03 2 39 04 4 21 02 2 76E 02 1 61 02 9 06 01 5 86 01 4 48 01 4 67 01 4 28 01 2 22 01 1 44 01 1 30 01 1 28 01 1 28 01 1 26 01 1 18 01 1 08 01 1 07 01 1 06 01 1 02 01 9 14 00 8 89E 00 8 11 00 7 59 00 7 21 00 5 00 03 P O u n O UJ Ur CO HM m 27 03 FO 2 87E 00 4 83 00 9 06E 03 6 15 01 5 46 00 FOR ADULT AGE 1 00E 04 9 06E 03 1 60E 02 1 05 02 6 15 01 3 45 01 2 20 01 1 64 01 1 78 01 1 63 01 8 42 00 5 46 00 4 93 00 4 83 00 4 83 00 4 78 00 4 48 00 4 09 00 3 99E 00 4 00 00 3 86E 00 3 43E 00 3 35 00 3 07 00 2 87 00 2 73 00 R ADULT AGE 1 00 04 UJ OP PO NJ Js 00 NJ ES PD UU ES ER D i 82 02 EXTERNAL EDE DOSE 3 93 02 Example Runs October 2010 Example Runs DOWNWIND DISTANCE 5 000 02 M DOSE 6 13E 01 REM DOWNWIND DISTANCE 1 000E 03 M DOSE 2 91 01 REM DOWNWIND DISTANCE 5 000E 03 M DOSE 3 87E 00 REM DOWNWIND DISTANCE 1 000E 04 M DOSE 1 32E 00 REM Dose Summary ICRP 72 INHALATION DOSE CALCULATIONS MADE WITH ADULT INTAKE AGE ICRP 72 INGESTION DOSE CALCULATIONS MADE WITH ADULT INTAKE AGE USING DOSE CONVERSION FACT
139. W Y 78 Pt D 9 uU D W Y 70 D w Y 9 Np w 80 Hg D W 94 w Y TI D AA w 82 D 96 w 83 Bi D W 97 Bk w 84 Po D w 98 Cf W Y 85 At D 99 Es W 7 Fr D 100 W RSAC 7 2 D 5 October 2010 2 Element 1 H 4 Be 6 E 9 F 11 Na 12 Mg 13 A 14 Si 15 P 16 S 17 CI 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 32 Ge 33 As 34 Se 35 Br 37 Rb 38 Sr 39 y 40 Zi RSAC 7 2 Allowable Clearance Imo 7 m n n qm gm uj ndm m n dm m dm gm Tri Classes IE lt lt lt lt lt I lt lt lt lt lt lt lt K lt lt lt amp I lt lt OBT n ICO In In ICRP 68 Recommended Lung Clearance Classes D 6 2 Element 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 72 Hf 73 Ta Lung Clearance Classes Allowable Clearance no o oom on o o o Classes M S S M M S M S M 5 M S M 5 M M M M M S M 5 M 5 M 5 M M M M M M M 5 M 5 M M 5 October 2010 Lung Clearance Classes Z Element 74 W 75 Re 76 Os TI Ir 78 Pt 79 Au 80 Hg 81 TI 82 Pb 83 Bi 84 Po 85 At 87 Fr Allowable Clearance Classes F E M F M S F M S F F 5 V F F
140. When the 1200 line option is used all subsequent fractionations of the radionuclide inventory using 1004 lines until a 7999 line is encountered are made on the inventory chosen to be retained for subsequent calculations If desired you can make even further decay and fractionation by exiting the 1000 Series with a 7999 line and reentering the 1000 Series with another 7000 line Variable Word Name Entry Description 1 1200 2 NCS Integer Number of reactor release steps X100 3 KEEPFLAG Integer Inventory to be retained for subsequent calculations 0 Retain activity remaining in reactor 1 Retain activity remaining in reactor 4 2 1 8 Reactor Linear Leak Rates Line 1201 You must insert the Reactor Linear Leak Rates Lines 1201 immediately following a 1200 line to establish the leak rates for the different groups of fission products Calculation of the Linear Leak Rate is performed by dividing the fraction of the group to be released from the reactor by the total reactor operating time of the cycle in seconds Variable Word Name Entry Description 1 1201 Radionuclide leak rate from the operating reactor fraction s 2 RR 1 Solids 3 RR 2 Halogens RSAC 7 4 5 October 2010 2000 Series Variable Word Name Entry Description 4 RR 3 Noble gases 5 RR 4 Cesium 6 RR 5 Ruthenium 4 2 1 9 Fission Product Calculation and Inventory Decay End Line 1999 Use this line to end the fission product inventory calculation or in
141. Y 97 1 0 390970 3 75E 00 1 5 Hi 1 0 1 3 0 Y 97 gt 7 97 1 0 400970 1 69 01 3 h 8 74E 01 1 0 1 4 0 Zr 97 gt Nb 97m 1 0 410971 5 27E 01 1 5 6 86 03 1 0 1 5 0 Nb 97m gt Nb 97 1 0 410970 7 21 01 2 m 1 68E 02 1 1 1 6 0 Nb 97 gt stable 430971 9 01E 01 4 d 0 1 1 1 0 1 Tc 97m gt Tc 97 1 0 440970 2 83E 00 4 d 0 0 9992 0 1 0 1 97 gt 97 0 9992 430970 2 60 06 5 0 1 1 1 2 1 Tc 97 gt stable 360980 2 24E 01 1 S 4 24E 06 1 0 3 0 0 3 Kr 98 gt Rb 98 1 0 370980 9 60 02 1 5 5 26E 03 1 0 1 1 0 3 Rb 98 gt Sr 98 1 0 380980 6 53E 01 1 5 6 98 01 1 0 1 2 0 3 Sr 98 gt Y 98 1 0 390980 2 00E 00 1 5 BH I 0 1 3 0 3 98 gt 71 98 1 0 400980 3 07 01 1 S BH 1 1 1 4 0 3 71 98 gt Nb 98 1 0 410981 5 13 01 2 m 2 72 02 1 1 1 0 0 3 Nb 98m gt stable 410980 5 15 01 2 m 4 48E 02 I 1 1 6 0 Nb 98 gt stable 430980 4 20E 06 5 y 0 1 1 1 0 1 Tc 98 gt stable 370990 5 03E 02 1 5 4 06 04 1 0 1 0 0 3 Rb 99 gt Sr 99 1 0 380990 2 69E 01 1 S 1 54E 01 1 0 1 1 0 3 Sr 99 gt 99 1 0 390990 1 47E 00 1 5 Hi 1 0 1 2 0 3 Y 99 gt Zr 99 1 0 400990 2 10E 00 1 S Hd 1 0 1 3 0 71 99 gt Nb 99m 1 0 410991 2 60E 00 2 m 1 49E 01 1 1 1 4 0 Nb 99m gt Mo 99 1 0 410990 1 50 01 1 5 1 37E 01 I 0 I 5 0 Nb 99 gt Mo 99 1 0 420990 6 59E 01 3 h 2 87E 03 1 0 1 6 1 013 Mo 99 gt Tc 99m 1 0 430991 6 02 00 3 h 3 34E 07 1 0 1 7 0 Tc 99m gt Tc 99 1 0 430990 2 11E 05 5 y 7 50E 02 1 1 1 8 9 136 Tc 99 gt stable 450991 4 70E 00 3 h 0 1 1
142. Y BUILDUP IN SOIL OVER FOR ADULT AGE 1 00 04 35 00 20 01 45 01 48 00 73E400 05 02 83 00 78E 00 09E 00 00E 00 60E 02 86E 00 93E 00 42 00 99 00 78 01 63 01 07 00 43 00 64 01 H3 UJ UJ F2 UJ S SUIS E NJ UU October 2010 TESTES 21 4 44 03 2 75 02 8 86 01 THYMUS 22 7 44 03 4 62 02 1 49 02 THYROID 23 1 38 07 8 59 05 2 77 05 ULI WALL 24 9 33 04 5 79 03 1 87 03 UTERUS 25 8 43 03 5 23 02 1 68 02 7 59 00 1 28 01 2 39 04 1 61 02 1 44 01 INGESTION EQUIVALENT DOSE ORDERED BY DOSE rem DOWNWIND DISTANCES m ORGAN NO 1 00 02 5 00 02 1 00 03 THYROID 23 1 38bE 07 8 59 05 2 77 05 LLI WALL 11 2 43 05 1 51 04 4 87 03 COLON 6 1 59 05 9 90 03 3 19 03 ULI WALL 24 9 33 04 5 79 03 1 87 03 BSURFACE 3 5 24 04 3 25 03 1 05 03 B WALL 2 3 46 04 2 15 03 6 90 02 ST WALL 20 2 72 04 1 68 03 5 39 02 R_MARROw 16 2 70 04 1 68 03 5 41 02 SI WALL 17 2 48 04 1 54 03 4 97 02 OVARIES 14 1 29 04 8 00 02 2 58 02 UTERUS 25 8 43 03 5 23 02 1 68 02 MUSCLE 13 7 59 03 4 71 02 1 52 02 ESOPHAGU 7 7 44 03 4 62 02 1 49 02 THYMUS 22 7 44 03 4 62 02 1 49 02 ET AIR 8 7 36E 03 4 57 02 1 47 02 BRAIN 4 6 88 03 4 27 02 1 38 02 KIDNEYS 9 6 33 03 3 93 02 1 27 02 15 6 31E 03 3 91 02 1 26 02 LIVER 10 6 18 03 3 83 02
143. a 5411 line 2 Buoyant plume rise Fire Convection Rise Requires a 5411 line Add a 5th word to Line 5410 Word Description 5 Plume meander If 0 defaults to 1 RSAC 7 4 15 October 2010 5000 Series 4 2 4 10 Plume Rise Control Line 5411 The 5411 line is present only when word 4 on the 5410 line is not equal to 0 Variable Word Name Entry Description 1 5411 Plume rise parameters 2 SDIA Internal stack diameter m 3 RS Restoring acceleration s If zero defaults to program calculated values of 8 7E 4 s for a weak inversion and 1 75E 3 s for a strong inversion WO Effluent velocity of gases from the stack m s 5 OH Stack gasses heat emission cal s for buoyant plume rise Enter zero for jet plume RSAC 7 4 16 October 2010 5000 4 2 4 11 Direct 2 0 Input Lines 5421 Enter these lines only if word 2 on the Diffusion Control Line 5400 is 3 Cloud gamma calculations using the finite plume model and plume depletion by ground deposition are not allowed when using this option Variable Word Name Entry Description 1 Integer 542 X 1 2 etc 2 CQ X Q for the Ist downwind distance N CQ for downwind distance Enter additional values on this and following line for each downwind distance entered on the 5 01 line 5999 line must immediately follow the input of the 542X lines 4 2 4 12 Dispersion to Building Room Line 5500 Enter the volume in
144. a 143 1 0 571430 1 42 01 2 6 01E 01 1 0 1 4 0 La 143 gt Ce 143 1 0 581430 3 30E 01 3 h 2 85E 02 1 0 1 5 1 755 143 gt 143 1 0 591430 1 36 01 4 2 95 06 1 1 1 6 1 21 01 Pr 143 gt stable 611430 2 65E 02 4 d 0 1 1 1 0 1 Pm 143 gt stable 531440 1 33E 01 1 5 3 42E 06 I 0 2 0 0 I 144 gt Xe 144 1 0 RSAC 7 2 B 28 October 2010 RSAC 7 2 Nuclear Data Library 541440 1 15E 00 1 S 6 57 03 1 0 3 1 0 144 gt Cs 144 1 0 551440 1 01E 00 1 S 3 1 TE 01 1 0 4 2 0 Cs 144 gt 144 1 0 561440 1 15E 01 1 S HHH 1 0 1 3 0 Ba 144 gt La 144 1 0 571440 4 08E 01 1 5 HHH 1 0 1 4 0 La 144 gt Ce 144 1 0 581440 2 85E 02 4 d 6 09E 02 1 1 1 5 1 49E 01 Ce 144 gt Pr 144 1 0 591441 7 20 00 2 m 6 68E 05 0 9993 0 1 6 0 Pr 144m gt Pr 144 994 591440 1 73E 01 2 m 8 25E 05 1 1 1 7 0 Pr 144 gt stable 611440 3 63E 02 4 d 0 1 0 1 0 1 Pm 144 gt stable 601440 2 29E 15 5 0 1 1 1 0 1 Nd 144 gt stable 541450 9 00E 01 1 1 48 04 1 0 3 0 0 145 gt Cs 145 1 0 551450 5 94 01 1 S 7 18E 02 1 0 4 1 0 3 Cs 145 gt Ba 145 1 0 561450 4 31 E 00 1 S HEE 1 0 1 2 0 3 145 gt 145 1 0 571450 2 48 01 1 S HHH 1 0 1 3 0 3 La 145 gt Ce 145 1 0 581450 3 01 00 2 m 2 30E 01 1 0 1 4 0 Ce 145 gt Pr 145 591450 5 98 00 3 h 9 32E 04 1 1 1 5 0 Pr 145 gt stable Tb 149 Gd 149 833 Eu 145
145. able for use see Figure 3 14 Information can be cut and paste into the comment screen from any windows based program or it can be directly typed into the form Add comments for Inventory Decay Figure 3 14 Comment entry screen 3 2 1 1000 Series Fission Product Inventory Calculation Screen 1 Input Type The first data entry screen for the 1000 series is the Input Type see Figure 3 15 Select the type of input to be generated Only one type can be selected at a time The option chosen determines the sequence of screens that follow screen 1 Input Type x Help Inventory Decay Reactor Operation Fractionate Inventory lt Back Comment Mext gt Figure 3 15 Screen 1 Input type screen Screen 2A Optional Inventory Decay This screen appears only if nventory Decay is chosen on screen 1 Indicate the inventory decay time see Figure 3 16 An inventory must have been input RSAC 7 3 11 October 2010 Using RSAC 7 2 previously for this to function properly A pull down menu is available to allow for a variety of input options Input T Input Type nput Type Inventory Decay Inventory Decay Line 1003 Figure 3 16 Screen 2A Optional Inventory Decay RSAC 7 3 12 October 2010 Using RSAC 7 2 Next notification of input completion for the 1000 series is given see Figure 3 17 Click the OK button to end data entry for the serie
146. actor operating history the user can then specify the fractional release of the radionuclide inventory by individual element by groups of elements solids halogens noble gases cesium or ruthenium or by a single release fraction for the entire inventory RSAC 7 2 calculates inventories for fission products only The nuclear data library see Appendix B contains selected activation products actinides and the daughters of actinides in addition to the fission products Inventories for activation products and actinides are not calculated by RSAC 7 however they can be added to the inventory by using the radionuclide direct input section of the program Subsequent sections of the program calculate the radioactive decay and doses from these additional radionuclides The model used by RSAC 7 2 to calculate fission product inventories is simple compared to the model used in the Oak Ridge isotope generation 2 ORIGEN2 program Croff 1980 RSICC 1991 RSAC 7 2 is simple to run and requires less computer time than ORIGEN2 In general the RSAC 7 2 model calculates fission product inventories well However it does not calculate inventories for activation products or actinides While the RSAC 7 2 model corrects for depletions of fission products by neutron activation it does not calculate all of the subsequent radionuclides that are produced by the neutron activation of fission products When irradiation times are long the burnup is relatively hi
147. actors Tab 3 54 Figure 3 71 Screen 5B Optional Forage Constants Tab 3 55 Figure 3 72 Screen 5B Optional Acute Modifiers essere nennen 3 56 Figure 3 73 Screen Optional Ground Surface Dose Parameters sene 3 57 Figure 3 74 Screen 3D Optional Air Immersion Dose Parameters a 3 57 Figure 3 75 Screen Optional Internal External Organ Selection sees 3 58 Figure 3 76 Screen Optional Element Selection sse nennen 3 59 Figure 3 77 Screen 2 Cloud Gamma Dose Control sese 3 60 Pipure 3 78 Applications Rt PRESE 3 61 3 79 Screen l Data Input nie rete iE 3 61 Figure 3 80 Screen 2 Program Output eeiam ti De ret 3 62 Figure 3 81 Meteorological CondilionSiSereen uuu ana sabes 3 63 Figure 3 82 Generated joint frequency table sse ener 3 64 Figure 3 83 Table generated from two points of interest rennen 3 65 Pipure A T THumisatine uyu recentes eed ete pep aere EE eee Ee ERRARE TRAE RN A 7 Figure 2 Deposition of dust in the respiratory A 18 Figure 3 Clearance pathw
148. alculation Dose Summary Execution Time Input Simulated Reactor Operation with Inhalation Dose Calculated Using ICRP 72 72 is the basis for the inhalation dose calculation Reactor Operation for 100 MW days 1000 10011 0705 1003 0 1 00E 07 8640000 1999 Fractionation of Radionuclide Inventory 1000 1001 1 0 0 1004 1 0 1 0 25 1 0 1 0 T 1999 Adding in the Beginning of Life Uranium Inventory in grams 2000 1 1 U 233 100 U 234 100 U 235 10000 U 238 1 e7 2999 Standard Dispersion Conditions for Transport 4 5000 0 zj Figure 3 13 Run results window Fach file that was run with RSAC appears as the top level item in the left navigation pane The file is broken down into sections that are identified in the output which will be the subitems under the file The item that is currently selected in the navigation pane is displayed in the right pane e view the contents of the whole file click the top level item that has the same name as the file The whole contents of the file will then be displayed in the right pane To view just one section of the file click on the sections item in the navigation pane that is listed under the file RSAC 7 3 10 October 2010 Using RSAC 7 2 3 2 Series Data Entry The following section steps through the data entry options are available in each series to build an input file for RSAC If at any time a comment button is active during series input a comment screen is avail
149. allowing input of decay times A maximum of eight decay times can be entered However when you want to see all of the output data on an unshifted screen or printed on a standard 80 column page enter a maximum of three decay times Decay Times Line 6101 Help Decay Times Option Decay times may be entered directly not decay times established in the 5000 Series input will be used single decay time of zero will print the inventory currently in memory with no additional decay quee Do you wish to use this option C Yes No Decay Times Select Decay Time Units and then enter up to 8 values Decay Time Units Second Press the enter key after each value to enable additional entries E E B E B BN lt Back Comment Next gt Figure 3 55 Screen 6 Decay Times RSAC 7 3 39 October 2010 Using RSAC 7 2 Screen 7 Optional Summation Control Shown only if A radionuclides in the library will be decayed was chosen on screen 2 This screen see Figure 3 56 will determine if you would like a summation of the radionuclide inventory by group solids halogens noble gases cesium and ruthenium and if the radionuclide inventory should be summed by element Summation Control Line 6200 Help Group Summation Control The fission product inventory for each group solids halogens noble gases cesium and ruthenium is summed and printed Element Summa
150. am point of contact The software management program has 10 software quality work activities that ensure that the safety software performs its intended functions The RSAC SQA plan documents the implementation strategies and appropriate standards for these 10 activities which are Software project management and quality planning Software risk management Software configuration management 5 Procurement and supplier management Software requirements identification and management Software design and implementation Software security Verification and validation V amp V SO 90 cM SONO CAS SEO DEA de Problem reporting and corrective action Training of personnel in the design development use and evaluation of security software RSAC nuclear safety software is controlled in a traceable planned and orderly manner The software quality work activities defined in this section provide the basis for planning implementing maintaining and operating safety software RSAC 7 2 4 October 2010 Installing RSAC 7 2 4 1 Configuration Control Configuration control is maintained by issuing copies of RSAC 7 2 with a unique serial number Only binary copies of RSAC 7 2 and its libraries are issued to users to prevent user changes to the program that would invalidate the extensive V amp V 2 4 2 Verification and Validation RSAC 7 2 has been subjected to extensive independent V amp V for use in performing safety rela
151. and you are representing and warranting that you are not located in under the control of or a national or resident of any such country or on any such list and that you acknowledge you are responsible to obtain any necessary U S government authorization to ensure compliance with U S law INL EXT 09 15275 Revision 1 Radiological Safety Analysis Computer RSAC Program Version 7 2 Users Manual Bradley J Schrader October 2010 Idaho National Laboratory Idaho Falls Idaho 83415 Prepared for the U S Department of Energy National Nuclear Security Administration Office of Field Support Under DOE Idaho Operations Office Contract DE AC07 051D14517 ABSTRACT The Radiological Safety Analysis Computer RSAC Program Version 7 2 RSAC 7 is the newest version of the RSAC legacy code RSAC 7 calculates the consequences of a release of radionuclides to the atmosphere Users generates a fission product inventory from either reactor operating history or a nuclear criticality event RSAC 7 models the effects of high efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes facilities and the environment Doses are calculated for inhalation air immersion ground surface ingestion and cloud gamma pathways RSAC 7 is used as a tool to evaluate accident conditions in emergency response scenarios radiological sabotage events and safety basis accident consequences
152. aquill Gifford Weather Class Slightly Stable Plume Rise Indicator No program calculated Plume Rise Plume Meander 0 Figure 3 12 Series main window in edit mode The series main window shows the data that were entered in for the series To edit the data click the edit button and each data entry screen is shown in sequence for editing Once through the whole series the data can be reviewed and saved or discarded If the data are discarded the original data will remain in the file To cancel the edit of a series click the X in the upper right corner of the current data entry screen and click yes in response to the confirmation The original data is then reloaded into the series main window RSAC 7 3 9 October 2010 Using RSAC 7 2 3 1 7 Run Results The run results window see Figure 3 13 gives an explorer like view of the run output from RSAC allowing the user to explore the results of several files at a time Run Results Example 07 Simulated Reactor Operation ICRP 72 Public Inhalation Dose rsac mulated Reactor 0 Input Radiological Safety Analysis Computer Program RSAC 7 0 0 Fission Product Calculation Fission Product Calculation Name Brad Schrader Company Idaho National Laboratory Serial 001 0001 0001 pir tn Computer INL413668 Run Date 01 12 2009 Run Time 09 51 51 Meteorological Data Decay Calculation File Example 07 Simulated Reactor Operation ICRP 72 Public Inhalation Dose rsac Inhalation Dose C
153. ate Br 035 bromine Fast 006 carbon Moderate Ca 020 calcium Moderate Cd 048 cadmium Slow p Absorption types for element bismuth Bi C Fast Moderate The default type is highlighted Figure 3 62 Screen 5A Optional Clearance Class Entry RSAC 7 3 46 October 2010 Using RSAC 7 2 Mortality Risk Calculation This screen appears when mortality risk is selected on the opening screen see Figure 3 63 Dose Calculation Control Line 7000 B Help Type of Dose Calculation Mortality risk Inhalation program default transfer parameters Mortality risk Inhalation transfer parameters to be entered on later screen Mortality risk Ingestion default to program calculated transfer parameters C Mortality risk Ingestion transfer parameters to be entered on later screen Mortality risk Ground Surface Mortality risk immersion r Output Control for Dose Only dose summary table by organ Only total organ doses Above plus doses for each element Above plus doses for each radionuclide Above plus dose summary table by organ Elements for Calculation r Organ choice All elements All organs C Organs will be selected lt Back Comment Next gt Elements will be selected Figure 3 63 Mortality Risk Calculation screen optional screens for inhalation ingestion transfer parameters and output control
154. ation This screen specifies individual element fractionations see Figure 3 25 To enter a fractionation for an element use one of the following methods Use the 17 and to select the desired element in the list scroll through the list and select the desired element type the symbol to quickly select the desired element Then click the Enter Fractionation button below the list or double click the element to supply a value Once the value has been supplied click the OK button to accept the value or click the Cancel button to discard the supplied value NOTE supply the same fractionation to multiple elements hold the lt shift gt or lt ctrl gt keys while selecting element then click the Enter Fractionation button To discard a fractionation already entered select the element from the list and click the Clear Selected button Element Fractionation Specification Line 11 0 Help actinium silver aluminum americium argon arsenic astatine gold barium beryllium bismuth berkelium bromine carbon calcium cadmium cerium Clear Selected Enter Fractionation lt Comment Next gt Figure 3 25 Screen 4B Element Fractionation Specification RSAC 7 3 17 October 2010 Using RSAC 7 2 3 2 2 2000 Series Direct Radionuclide Input Screen 1 Series Title Enter a brief comment about the 2000 Series that is being appended and click on Continue see Figure 3 26 This comment is used to distinguish
155. ays for the ICRP 30 model seen A 18 Figure C 1 o versus distance downwind by stability class Hilsmeier Gifford C 2 Figure C 2 o versus distance downwind by stability class Hilsmeier Gifford C 3 viii Figure C 3 oy versus distance downwind by stability class 2 400001 C 4 Figure C 4 o versus distance downwind by stability class C 5 Figure C 5 o versus distance downwind by stability class Pasquill Gifford C 6 Figure C 6 o versus distance downwind by stability class Pasquill Gifford C 7 TABLES Table A 1 Estimated seasonal and annual mixing depths m for mornings and afternoons at the Idaho National Laboratory IND us au 5 Table 2 Values for the constant asee a Saen EEEn EE aE S 11 Table 3 Weighting factors for stochastic risks eene A 16 Table 4 ICRP 30 mathematical model used to describe clearance from the respiratory system 17 Table A 5 Default annual dietary ingestion rates for A 19 Table A 6 RSAC 7 2 default radionuclide independent parameters used to calculate concentrations in crops from chronic releases eese 21 Table 7 RSAC 7 2 eleme
156. b 127 1 0 501271 4 13E 00 2 m 5 04E 02 1 0 1 0 0 Sn 127m gt Sb 127 1 0 511270 3 85E 00 4 d 7 46E 03 1 1 1 5 0 Sb 127 gt Te 127 1 0 521271 1 09 02 4 9 80E 05 0 976 0 1 6 2 053 Te 127m gt Te 127 976 521270 9 35E 00 3 h 4 00E 03 1 1 1 7 0 127 gt stable 551270 6 25E 00 3 h 0 1 0 2 0 1 Cs 127 gt Xe 127 1 0 541270 3 64E 01 4 d 0 1 1 3 1 1 Xe 127 gt stable 471280 5 80E 02 1 S 1 38E 06 1 0 1 0 0 3 Ag 128 gt Cd 128 1 0 481280 3 40E 01 1 S 1 82 03 1 0 1 1 0 3 Cd 128 In 128 1 0 491280 8 40E 01 1 S 6 20E 02 1 0 1 2 0 3 In 128 gt Sn 128 1 0 501280 5 91E 01 2 m 3 06E 01 1 0 1 3 0 Sn 128 gt Sb 128m 1 0 511281 1 04E 01 2 m 1 21 02 1 1 1 4 0 Sb 128m gt stable 511280 9 01E 00 3 h 1 60E 02 1 1 1 0 0 Sb 128 gt stable 531280 2 50E 01 2 m 0 1 1 2 0 1 1 128 gt stable 561280 2 43E 00 4 d 0 1 0 1 0 1 128 gt Cs 128 1 0 551280 3 62 00 2 m 0 1 1 4 1 0 3 Cs 128 gt stable 481290 2 70E 01 1 S 3 06E 04 1 0 1 0 0 3 129 gt In 129 1 0 491290 6 10E 01 1 S 3 94E 02 1 0 1 1 0 3 In 129 gt Sn 129m 1 0 501291 6 90 00 2 m 3 30E 01 1 1 1 2 0 3 Sn 129m gt Sn 129 1 0 501290 2 23E 00 2 m 2 03E 01 1 0 1 3 0 3 Sn 129 gt Sb 129 1 0 Sb 129 Te 129m 15 Te 129 511290 4 40E 00 3 h 1 14E 01 0 85 1 1 4 0 85 521291 3 36 01 4 d 1 20 02 0 65 0 1 5 2 90 01 129 gt Te 129 65 521290 6 96E 01 2 m 1 48E 02 1 0 1 6 0 Te 129 gt 1 129 1 0 531290 1 57E 07 5 y 2 50E 02 1 1 2 7 5 272 1 129 gt stable 540010 3 00E 20
157. be entered external file TRANCON on next screen Crop Information Time period that crops are exposed to contamination following the end of the acute release days Time must be between 0 04167 day 1 hour and 60 days o F Harvest duration period following the end of the acute release days Time must be between and 60 days default 7 days lt Back Comment Next gt Figure 3 67 Screen 4B Optional Ingestion Dose Control RSAC 7 3 5 October 2010 Using RSAC 7 2 Screen 5B Optional Ingestion Dose Constants This screen appears only if ngestion parameters will be entered on next screen 1s chosen on screen 4B see Figures 3 68 through 3 72 NOTE All tabs will need to be reviewed before continuing 9 Ingestion Dose Constants Line 7051 Help Usage Constants Retention Constants Field Factors Forage Constants Acute Modifiers Stored vegetable usage factor kg yr wet weight Fresh vegetable usage factor kg yr wet weight Meat usage factor kg yr wet weight Milk usage factor liters yr Fraction of stored vegetables from garden Fraction of fresh vegetables from garden lt Back Comment Next gt Figure 3 68 Screen 5B Optional Usage Constants Tab RSAC 7 3 52 October 2010 Using RSAC 7 2 43 Ingestion Dose Constants Line 7051 Help Usage Constants Retention Constants Field Factors Forage Constants Acute Modifiers Retention factor for activi
158. can be evaluated RSAC 7 3 24 October 2010 Using RSAC 7 2 Screen 3 Optional General Meteorological Information This screen appears only if option 1 was chosen on screen 2 Enter the Meteorological Conditions and click on next see Figure 3 37 If questions arise on what the inputs are or how the default values were chosen move the cursor over the item in question and right click then click on Display Help Select Help and the information will be displayed see Figure 3 38 General Meteorological Information Line 5001 Help Average Wind Velocity 1 Meters Second Stack Height Range lt 200m Typical stack heights are at least 2 5 times the building height Mixing Depth Range lt 3000m default 400 m Washout Factor 1 5 default 0 Wet deposition scavenging coefficient l s Set equal to zero when no plume depletion by wet deposition is desired This coefficient simulates rainout of the plume and will very quickly deplete the release Values for wet deposition scavenging coefficient range from 4 0 E B to 3 0 E 3s 1 with a median value of 1 5 E 4 Avoid too large a value to prevent plume overdepletion 400 1 099 Air Density m Range 5 E2 to 2 E3 default 1 089E3 Yes No Plume depletion by dry deposition lt Back Comment Next gt Figure 3 37 Screen 3 Optional General Meteorological Information Mixing Depth The third se
159. creen 2 see Figure 3 65 Dose Calculation Control Line 7000 Help Type of Dose Calculation cR RA Ground Surface Air immersion C Inhalation transfer parameters to be entered on later screen Ingestion default to program calculated transfer parameters Ingestion transfer parameters to be entered on later screen Output Control for Dose Only dose summary table by organ Only total organ doses C Above plus doses for each element Above plus doses for each radionuclide C Above plus dose summary table by organ Elements for Calculation All elements Elements will be selected Dose Unit rem Sv Organ choice i All organs Organs will be selected lt Back Comment Next gt Figure 3 65 Screen 6 Optional Resuspension of Activity RSAC 7 3 49 October 2010 Using RSAC 7 2 Screen 3B Optional Ingestion Dose Parameters This screen appears only if option 3 or 4 is chosen for Type of Dose Calculation on screen 2 see Figure 3 66 Enter decay time s for exponential decay function and the plant midpoint of operating life y Age at Intake Line 7000 Help Member of the Public ICRP 72 1 micron AMAD 15 Years C C C 10 Years Adult Adult worker inhalation dose 5 micron AMAD 1 day acute inhalation dose C ICRP 30 model 412 lt
160. e LEE AED Re RAE P PR ERST 3 6 Figure 3 9 Contents Pane o ed er e HE RO EE manua Le ER EEE ee x RR e Reg 3 7 Figure3 10 Add Series Menu cete rere ED entry e a PX e ED a PORE ER HH CERE EE eek did 3 7 Figure 3 11 Series main window with title input sessi nns 3 8 Figure 3 12 Series main window in edit mode sessi eren nennen 3 9 Figure 3 13 Rum results WindOW ase eti tes ER EE eo NEP n eR Rs 3 10 Figure 3 14 Comment entry SCTe8n une cento ne aa een via let eie T rer rn phate ves 3 11 Figure 3 15 Screen 1 Ee e RAV MEER eI TD n I RITE 3 11 Figure 3 16 Screen 2A Optional Inventory Decay ssssssessesseeeeeeeee en ener enne 3 12 Figure 3 17 Input Completion Notification screen ener 3 13 Figure 3 18 Screen 2B Optional Reactor Operation sessi 3 13 Figure 3 19 Screen Release During Reactor Operation essere 3 14 vi Figure 3 20 Screen 4A Release During Fission Product 1 212022 3 14 Figure 3 21 Screen 2C Optional Fractionate Inventory esee 3 15 Figure 3 22 Screen Optional Fractionation by Group sese 3 15 Figure 3 23 Screen Optional Fractionation by a Constant sse 3 16 Figure 3 24 Screen 3D Optional Fractionation by
161. e air immersion doses see Section 4 1 Radionuclide Entry Lines its use requires caution The semi infinite model accurately calculates the plume gamma dose when the plume size is large compared to the mean free path of the gamma rays As with the air immersion model the semi infinite model can overestimate doses by several decades when the plume size is small compared to the mean free path ofthe gamma rays When the plume has not diffused to the ground level the model can underestimate doses by several decades Before this model is used an evaluation should be using the finite plume cloud gamma model to ensure that the two models have reasonably converged RSAC 7 2 A 36 October 2010 atnematical Moaels Table A 8 Comparison of calculated buildup factors for air to Berger s buildup factors Mean free paths Energy gt A gt S S O MeV C p C p p C p C 0 015 1 17 1 17 1 28 1 25 1 37 1 36 1 43 1 46 1 52 1 54 0 02 1 41 1 41 1 69 1 62 1 94 1 94 2 15 2 25 2 49 2 51 0 03 2 24 2 24 3 29 3 19 4 85 4 87 6 93 7 09 9 19 9 21 0 04 3 33 3033 5 87 5 86 11 53 11 50 21 17 21 10 32 00 32 20 0 05 4 25 4 25 8 65 8 72 20 85 20 80 46 59 46 10 80 80 80 70 0 06 4 75 4 75 10 69 10 80 29 22 29 40 75 55 74 60 145 00 144 00 0 08 4 81 4 81 12 14 12 00 37 96 38 20 117 75 115 00 253 00 252 00 0 1 4 48 4 48 11 51 11 40 37 18 38 50 126 22 124 00 286 00 285 00 0 15 3 72 3 72 9 47 9 20 31 03 31 70 109 44 106 00 253 00 252 00 0 2 3 27 3 27 7 80 7 7
162. e concentration of radionuclide i in milk is dependent on the concentration in the feed and the quantity of feed consumed by the animal The equation used to calculate the concentration in milk is Ci Fy 0 674 where concentration of radionuclide i in milk pCi L Fm average fraction of the animal s daily intake of radionuclide i that appears in milk d L Qr amount of feed consumed by the animal normally 16 kg d dry weight tr average transport time of the activity from the feed into the milk and to the receptor d The equation used to calculate the concentration in milk 15 Qp exp At where Cf concentration of radionuclide i in meat pCi kg average fraction of the animal s daily intake of radionuclide i that appears in each kilogram of flesh d kg te average time between slaughter and consumption d The equation used to calculate the concentration of tritium in vegetation from chronic releases is 0 75 0 5 CY 3 169 x10 Q HL where concentration of tritium in vegetation pCi kg 12 Cus 3 3169x197 10x10 pCi Ci DERE g kg 3 156 x10 s yr RSAC 7 2 A 25 A 40 A 41 A 42 A 43 October 2010 Mathematical Models annual release of tritium Ci yr atmospheric diffusion relative to the initial point of release s m 0 75 fraction of total plant mass that is water 0 50 ratio of tritum concentration in plant water to tritium concentration in at
163. ecay Constants Set 1 Linear Constant 1 Exponential Constant 0 Diffusion Control Program calculated standard deviations of plume concentration Building Width 0 meters Building Height 0 meters Figure 3 9 Contents pane 3 1 5 Adding a Series To add or append a new series to the file use the Add Series Menu see Figure 3 10 on the main window and click the name of the desired series asses Figure 3 10 Add Series Menu RSAC 7 3 7 October 2010 Using RSAC 7 2 When the series name is clicked the main series window will appear with the series title window on top of it see Figure 3 11 5000 Meteorological Data Input Series Title Enter meteorological data for first hour of release Meteorological Data Series 5000 Dun opis 5000 Series Title Please enter a brief comment to help identify this Series Enter meteorological data for first hour of release Figure 3 11 Series main window with title input The series title 1s used to identify the series in the file summary on the main window to make future editing sessions easier Once the series title has been entered the data entry screens are shown in sequence to allow input of the data for that series When all the data have been entered for that series the series main window becomes active again allowing review of the data and the option to save or discard the data To cancel data entry for a series click the X in the upper right corner of the current data
164. ed on nuclear systematic These short lived fission products which are precursors to longer lived daughters are signified by a cross section value of 0 3 An option is provided in the fission product printout section of RSAC 7 2 to suppress printing these radionuclides RSAC 7 2 3 October 2010 RSAC 7 2 Nuclear Data Library 10030 1 23E 01 5 y 1 10 02 1 1 3 0 5 52 07 H 3 gt stable 40070 5 32E 01 4 d 0 1 1 1 0 1 Be 7 gt stable 40100 1 51 06 5 0 1 1 1 0 1 Be 10 gt stable 60110 2 04 01 2 0 1 1 1 0 1 11 gt stable 60140 5 70 03 3 y 1 30 06 1 1 1 0 9 20 08 C 14 gt stable 90180 1 10E 02 2 m 0 1 1 2 0 1 F 18 gt stable 110220 2 60E 00 5 y 0 1 1 1 0 1 Na 22 gt stable 110240 1 50 01 3 h 0 1 1 1 0 1 Na 24 gt stable 120280 2 09 01 3 0 1 1 1 0 1 Mg 28 gt stable 130260 7 17 05 5 y 0 1 1 1 0 1 Al 26 gt stable 140310 1 57 02 2 m 0 1 1 1 0 1 81 31 gt stable 140320 1 53 02 5 y 0 1 0 1 0 1 Si 32 gt P 32 1 0 150320 1 43E 01 4 d 0 1 1 1 1 1 32 gt stable 150330 2 53 01 4 0 1 1 1 0 1 P 33 gt stable 160350 8 75 01 4 0 1 1 1 0 1 5 35 gt stable 170360 3 01E 05 5 y 0 1 1 2 0 1 36 gt stable 170380 3 72E 01 2 m 0 1 1 2 0 1 38 gt stable 170390 5 56E 01 2 m 0 1 0 2 0 1 1 39 gt Ar 39 1 0 180390 2 69 02 5 y 0 1 1 3 1
165. ee Figure 3 7 provides a summary of all data that have been entered for the current series Data can be reviewed then saved edited or discarded using the buttons on the lower right corner of the window Meteorological Data Input xi Series Name Standard Dispersion Conditions for Transport Meteorological Data Series Input Print Contents Series Input ion Opti ispersion Option hare S Pn Release will be modeled using Meteorological Data Meteorological Data Downwind Distances Meteorological Data Leakage Decay Constants Average Wind Velocity 1 meters second Diffusion Control Stack Height 0 meters Mixing Depth 400 meters Plume Standard Deviation Control Air Density 1 099 3 grams cubic meter Washout Factor 0 liters second Plume Depletion by Dry Deposition No Downwind Distances Downwind Distance 1 100 meters Downwind Distance 2 500 meters Downwind Distance 3 1000 meters Downwind Distance 4 5000 meters Downwind Distance 5 10000 meters Leakage Decay Constants 5 et Linear Constant 1 Exponential Constant 0 Diffusion Control Program calculated standard deviations of plume concentration Building width 0 meters Building Height 0 meters Plume Standard Deviation Control Standard Deviation Set Pasquil Gifford Weather Class Slightly Stable Plume Rise Indicator No program calculated Plume Rise Plume Meander 0 Figure 3 7 Series Main Window RSAC 7 3 5 October 201
166. elease During Reactor Operation Screen 4A Release During Fission Product On this screen see Figure 3 20 enter the inventory to be retained for subsequent calculations Specifically supply the following e Number of reactor incremental release steps Radionuclide leak rate from the reactor for each of the following solids halogens noble gases cesium and ruthenium Release During Reactor Operation Line 1 2 Help Number of reactor incremental release steps Range 1 to 100 r Inventory to be retained for subsequent calculations Retain activity remaining in reactor Retain activity leaked from reactor r Radionuclide leak rate from the reactor fraction s Solids ho o Halogens Noble Gases Ruthenium fio Back Comment Next gt Figure 3 20 Screen 4A Release During Fission Product RSAC 7 3 14 October 2010 Using RSAC 7 2 Screen 2C Optional Fractionate Inventory This screen appears only if Fractionate Inventory is selected on screen 1 see Figure 3 21 Select the option of what type of fractionation should be performed Fractionation Type x Help C Fractionation is by a constant Fractionation by element lt Back Comment Next gt Figure 3 21 Screen 2C Optional Fractionate Inventory Screen 3B Optional Fractionation by Group This screen appears only if Fractionation by group is selected on the
167. erm and the physicochemical characteristics For example plutonium nitrates and oxides have different time scales for dosimetric effects in the body Thus the appropriate lung absorption type should be used in the dose conversion factor file used in the RSAC run In all cases RSAC will default to the lung absorption type that results in the highest dose RSAC 7 2 5 October 2010 Using RSAC 7 2 INTENTIONALLY BLANK RSAC 7 2 6 October 2010 Using RSAC 7 2 3 EXECUTING RSAC 7 RSAC 7 2 can be executed directly using a user supplied ASCII input file or the windows graphical user interface can be used to build input files For those familiar with RSAC inputs and a DOS based environment the same input output techniques used since RSAC 2 1973 can be applied and is not discussed here Further information on this command line process can be found in the user manuals of all earlier versions However for a complete description of the command line inputs for RSAC 7 2 see chapter 4 3 1 Using RSAC 7 As previously discussed in section 2 2 the software installation should be validated upon installation and when any changes are made to the computer operating system that may affect the accurate execution of RSAC 3 1 1 Main Window The RSAC main window see Figure 3 1 provides access to all of the programs tools and features Rsac 7 InputFile1 rsac xl Edit Run Examples Tools Window SSC InputFile1 2
168. es and manuals To obtain copy of RSAC 7 2 or to resolve problems encountered when running RSAC 7 2 contact Dr Bradley J Schrader P E CHP Idaho National Laboratory P O Box 1625 Idaho Falls ID 83415 3214 208 526 0912 email Bradley Schrader inl gov 2 4 Software Management and Quality Assurance The scope of the Department of Energy Quality Assurance QA Rule 10 CFR 830 Subpart A is stated as This subpart establishes quality assurance requirements for contractors conducting activities including providing items or services that affect or may affect nuclear safety of DOE nuclear facilities The scope of the QA Rule encompasses the contractor s conduct of activities as they relate to software items or services Therefore the RSAC software application for nuclear safety safeguards and security and emergency preparedness are within its scope DOE O 414 1C establishes the Software Quality Assurance SQA requirements to be implemented under the Rule for RSAC DOE O 414 1C requires that an appropriate level of quality infrastructure be established and a commitment made to maintain this infrastructure for the software The RSAC SQA program establishes the appropriate software life cycle practices including design concepts to ensure that the software functions reliably and performs correctly the intended work specified for that software The RSAC SQA program is fully documented and available for review from the RSAC progr
169. escaping from the system The equations in CRITDOS have been modified to allow the user two additional options for neutron escaping from the system In addition to the 0 10 escape fraction which is representative of a large moderated system the user can choose a moderated system with an escape fraction of 0 30 or a small unreflected metal system with an escape fraction of 0 70 To run the Critdos subroutine click on the Critdos tab and click the Launch Critdos link see Figure 3 78 RSAC 7 3 60 October 2010 Using RSAC 7 2 Figure 3 78 Applications Tab Screen 1 Data Input Use this screen to supply the following information see Figure 3 79 The title that will appear on each page of output The total fissions Distance in feet Concrete thickness in inches and the System type CritDos Ei x Figure 3 79 Screen 1 Data Input RSAC 7 3 61 October 2010 Using RSAC 7 2 Screen 2 Program Output Displays the output results from Critdos see Figure 3 80 This is a test run for 1E19 Output B Lini x Print Close Title Run Date 1 12 2009 Total Fissions Distance ft Concrete Thickness fin Neutron Fraction Neutron Unshielded Dose Rem 7 42E 04 Shielded Dose Rem 7 42E 04 Attenuation Neutron Attenuation 1 00 00 1 00E 00 This is a test run for 1E19 CRITDOS Version 2 6 0 1 00 19 1 00 01 2 00 00 1 00 01 Garma 2 24E 04 2 24E 04 Total 9 6
170. essed in hours in Equation A 60 for convenience however user input of these variables in Section 4 1 Optional Ingestion Dose Calculation Control Line 7004 15 in days The equation used to calculate concentration of carbon 14 in vegetation following an acute release is v _ 11 PA 0 11 Cj 2 778 x10 F Oua ZE A 61 where concentration of C 14 in vegetation following an acute release pCi kg F fraction of annual crop that is contaminated by acute release Qua acute release rate of C 14 Ci h A 3 3 Ground Surface Dose The dose from radioactivity deposited on the ground surface is calculated using dose rate conversion factors DRCFs from Federal Guidance Report No 12 Eckerman 1993 This requires integration of the activity on the ground over the exposure period While this is a very simple integration for a single radionuclide it can become complex when the radionuclide is the progeny of a long chain of precursors RSAC 7 2 uses a very subtle relationship that makes this integration simple When there is only a single radionuclide in a chain the equation used to calculate the dose to an individual from the activity deposited on the ground is G A Df V F Ajat 62 g 0 where D dose from radionuclide i deposited on the ground surface rem dose rate conversion factor rem m dis ground level atmospheric diffusion relative to the initial point of release s m Va dry deposit
171. f IMOD Resuspended Activity enter IMOD as a negative value 3 ISW Integer Output control 2 Only dose summaries by organ 1 Only total organ doses 0 Above plus doses for each element 1 Above plus doses for each radionuclide 2 Above plus dose summary tables by organ RSAC 7 4 22 October 2010 Example Runs 4 IDU Integer Dose unit 1 2 Sv 5 NCH Integer Number of elements for which calculation is done 0 elements 1 As indicated on Optional Element Selection Lines 7081 6 IONC Integer Organ number choice 1 Default to all organs 2 As indicated on the Optional Selection of Organs Line 7002 7 Inhalation Ingestion Mortality Morbidity intake age age group ICRP 72 model 0 ages age groups 1 3 months 0 5 years 2 1 year 5 15 years 3 5 years 15 25 years 4 10 years 25 70 years 3 15 years 0 110 years 6 Adult 7 Adult Worker ICRP 68 model inhalation only 8 Acute inhalation dose inhalation only 9 ICRP 30 model If word two IMOD was entered as ground surface or air immersion calculation then the final word in this line is not used in any calculations However this word must be present It is suggested that you use 0 for this value though integers 1 9 would have the same results A special test option has been added to print out the actual dose conversion factors used in RSAC 7 This is initiated by putting 201 in word 4 of Line 700
172. for either jet or buoyant plume Revise fission yields and half lives Add radionuclides to the standard library Update the photon data library Enhance error diagnostics Include verification and validation necessary to meet the additional requirements for software imposed by American Society of Mechanical Engineers ASME Nuclear Quality Assurance NQA 1 2000 Quality Assurance Requirements for Nuclear Facility Applications In 1994 RSAC 5 Wenzel 1994 was issued to Add an option to calculate cloud gamma doses expressed in external dose equivalent Add a variable particle size option for inhalation dose calculations Resolve the over depletion for ground level releases during stable meteorology that was observed in earlier versions of RSAC Add a reflective meteorological model to better model diffusion below the mixing depth Include additional radionuclides to more accurately model the U 235 fission chain Add a dose summing option Incorporate a simplified notation for radionuclide identification Include a capability to read radionuclide inventories from external files RSAC 7 1 2 October 2010 Introduction Correct errors observed in earlier versions of RSAC for the finite plume model integration for cloud gamma dose calculations and large plumes Add meteorological diffusion using Pasquill Gifford parameters Include an option to simulate the release of fission products from an operating reactor Update forage and vegetation
173. gh or the enrichment of the fuel is low inventories of radionuclides produced primarily by the activation of fission products 134 Pm 147 Sm 151 Eu 154 and Eu 155 can differ from ORIGEN2 calculated inventories by more than 2096 When doses from these radionuclides are significant compared to the other fission products users should use a more sophisticated computer program such as ORIGEN2 and import the final inventory using the 2000 Series direct radionuclide input option RSAC 7 2 can then be used to calculate inventory decay and simulate additional reactor operation or fuel handling accidents such as a criticality The 1000 Series of RSAC 7 2 can be reentered as many times as desired to modify the radionuclide inventory One of the options in this series is to fractionate the radionuclide inventory and to simulate removal of activity by cleanup systems such as HEPA filters The inventory can be fractionated for a chemical group element or the entire inventory 1 2 2 2000 Series Direct Radionuclide Input This series allows users to input a radionuclide inventory from an external file or to directly input the amounts of radionuclides to be used in subsequent calculations The direct radionuclide input option should be used to add activation products and other radionuclides not generated by the 1000 series source term generation function RSAC 7 1 4 October 2010 Capabilities 1 2 3 3000 Series Dose Summary Option This serie
174. gt Zn 77 1 0 300770 2 08E 00 1 5 3 62 03 1 0 1 2 0 3 Zn 77 gt Ga 77 1 0 310770 1 32E 01 1 S 5 32E 03 1 1 1 3 0 Ga 77 gt Ge 77 1 0 320771 5 29E 01 1 5 4 78 04 0 96 1 1 4 0 Ge 77m Ge 77 04 As 77 960 320770 1 13E 01 3 h 6 89E 04 1 0 1 5 0 Ge 77 gt As 77 1 0 330770 3 88E 01 3 h 1 27E 05 I 1 1 6 0 As 77 gt stable 350770 5 70E 01 3 h 0 1 1 1 0 1 Br 77 gt stable 280780 1 38E 01 1 5 5 06 08 1 0 1 0 0 3 Ni 78 gt Cu 78 1 0 290780 3 42E 01 1 5 4 5 05 1 0 1 1 0 3 Cu 78 gt Zn 78 1 0 300780 1 47E 00 1 S 4 25E 03 1 0 1 2 0 3 Zn 78 gt Ga 78 1 0 310780 5 09 00 1 5 1 42 02 1 0 1 3 0 3 Ga 78 gt Ge 78 1 0 320780 8 80E 01 2 m 2 00E 03 1 0 1 4 0 Ge 78 gt As 78 1 0 330780 9 07E 01 2 m 2 18E 04 1 1 1 5 0 As 78 gt stable 290790 1 88 01 1 5 5 18 06 1 0 1 0 0 3 Cu 79 gt Zn 79 1 0 300790 9 95E 01 1 5 1 65 03 1 0 1 1 0 3 Zn 79 gt Ga 79 1 0 310790 2 85E 00 1 5 1 52 02 1 0 1 2 0 3 Ga 79 gt Ge 79 1 0 320790 1 90E 01 1 5 2 66E 02 1 0 1 3 0 3 Ge 79 gt As 79 1 0 330790 9 01 00 2 m 9 41E 03 I 0 I 4 0 As 79 gt Se 79m 1 0 340791 3 92 00 2 m 8 05E 06 I 0 1 5 0 Se 79m gt Se 79 1 0 RSAC 7 2 B 8 October 2010 RSAC 7 2 Nuclear Data Library 340790 2 95E 05 5 y 8 03E 06 1 1 1 6 3 63E 01 79 gt stable 370790 2 29E 01 2 m 0 1 0 1 0 1 Rb 79 gt Kr 79 1 0 360790 3 50
175. he desired radionuclide Then click the Enter Curie button below the list or double click the radionuclide to supply a value Once the value has been supplied click the OK button to accept the value or click the Cancel button to discard the supplied value NOTE 1 To supply the same curie to multiple radionuclides hold the shift or lt ctrl gt keys while selecting radionuclide then click the Enter Curie button To discard a Curie already entered select the radionuclide from the list and click the Clear Selected button NOTE 2 If the selection mode changes from curies to grams or Becquerel s the input screen is basically the same other than the name on the enter key 55 Radionuclide Input Help Clear Selected Enter Curie lt Comment Next gt Figure 3 30 Screen 4A Optional Radionuclide Curie Input RSAC 7 3 20 October 2010 Using RSAC 7 2 Screen 4B Optional External File for Radionuclide Entry This screen appears only when external file will be specified is chosen on screen 3 see Figure 3 31 Enter the name of the file that contains the list of radionuclides and curie content Use the Select File button to locate the file Radionuclide External File Line 2002 x Help External File Selection External File Name Select File lt Back Comment Next Figure 3 31 Screen 4B Optional External File for Radionuclide Entry Screen 5
176. he distance between a source and the receptor This value is 2 y 19 When the release is from an elevated point during stable meteorological conditions significant concentrations of the plume often do not reach ground level until the stability change occurs The most common breakup of stable meteorology inversion is through a phenomenon known as fumigation which can result in increased ground level concentrations While fumigation is often ignored in other codes it is a well documented phenomena NRC 1982 Slade 1968 4 Turner 1970 Yanskey et al 19662 Fumigation occurs when the nocturnal temperature inversion at the surface is being broken up by surface heating shortly after sunrise The plume may be transported large downwind distances during the stable meteorology condition before a fumigation breakup occurs The length of time that a fumigation condition lasts is a function of the release height and the downwind terrain Fumigations typically last approximately 30 minutes for stacks in the 30 to 50 meter heights and approximately 60 minutes for stacks in the 75 to 100 meter heights The inversion breakup creates moderately unstable conditions under an inversion lid thereby limiting vertical dispersion to the area between the ground and the base of the inversion see Figure A 1 Hali Figure A 1 Fumigating plume Based on the assumption that the concentration is distributed uniformly in the vertical t
177. he series title screen the Dose Control Calculation screen is displayed see Figure 3 58 In this data entry screen you will be asked to select the type of dose calculation or risk evaluation per Federal Guidance Report 13 Calculation Type Line 7000 gt Help Type of Calculation mE O Mortality Risk C Morbidity Risk Resuspended Activity lt Back Comment Next gt Figure 3 58 Dose Selection Screen RSAC 7 3 42 October 2010 Using RSAC 7 2 Based on the type of calculation chosen a different screen sequence will be presented see Figure 3 59 Type of dose calculation Internal External Amount of printed output Dose unit If all elements are to be used in the calculation If all organs are to be included in the dose calculation Dose Calculation Control Line 7000 Help Type of Dose Calculation inhalat C Inhalation transfer parameters to be entered on later screen C Ingestion default to program calculated transfer parameters C Ingestion transfer parameters to be entered on later screen C Ground Surface C Air immersion Dose Unit rem C Sv Output Control for Dose Only dose summary table by organ Only total organ doses Above plus doses for each element Above plus doses for each radionuclide Above plus dose summary table by organ Elements for Calculation Organ choice All elements All
178. he total plume depletion is A 27 pC Foi Es FE ont A 2 4 Leakage Rate Function RSAC 7 2 can correct the radionuclide inventory for decay during holdup before leaking from a building stack or containment vessel to the atmosphere Leakage is expressed in the form of a series of exponential approximations of the following form RSAC 7 2 11 October 2010 atnematical Moaels L t x u y exp K2 x u A 28 jel where L t x u leakage rate function 5 t time following the initiation of the release s x u time required to reach any downwind receptor location s n number of exponential approximations 1 lt n x10 Kl linear constant s 2 exponential constant 877 RSAC 7 2 Values of K1 and K2 can be either positive or negative If a constant leakage rate is desired set K2 0 and the reciprocal of the time that it takes for the activity to be released to the atmosphere The use of one set of leakage constants 1s normally sufficient for most calculations It is important not to decay the radionuclide inventory twice before its release to the atmosphere This can inadvertently occur when the total activity of each radionuclide to be released to the atmosphere over an extended period of time is entered directly into RSAC 7 2 rather than using RSAC 7 2 to calculate the radionuclide inventory When this is the case no additional decay of the activity before release is desired even
179. ible parts of crops pCi kg wet weight per pCi kg dry soil t period of long term buildup for activity in soil h P effective surface density for soil kg m dry th holdup time between harvest and consumption by either humans or livestock h The units of tp te and tp are expressed in hours in Equation A 38 for convenience however user input of Table A 6 and Section 4 1 Dose Calculation Control Line 2 7001 is in years and t and tn in Table A 6 and Section 4 1 Ingestion Constants Line 2 7052 and Ingestion Constants Line 3 7053 are in days RSAC 7 2 A 20 October 2010 Mathematical Models A summary of element independent default parameters used to calculate the concentration of radioactivity in crops from chronic releases are presented in Table A 6 Element dependent parameters Baes et al 1984 are presented in Table A 7 Table A 6 RSAC 7 2 default radionuclide independent parameters used to calculate concentrations in crops from chronic releases Parameter Value Units Symbol Fraction grown in garden Produce 0 76 i Leafy vegetables 1 0 fi Fallout interception fractions r Pasture 0 57 Vegetables 0 2 Iodines on forage 1 0 Removal rate constant 0 0021 Aw Period of crop exposure during t growing season Vegetables 60 d Forage 30 d Vegetation yield Y Vegetables 2 kg m dry Forage 0 28 kg m wet Time of activity buildup 1 315E 5 h tb in soil 15 Soil surface density 22
180. in the 5000 Series Dispersion Control Input following initiation of the 3000 Series option however downwind distances cannot be changed Word Name Entry Description 1 3000 2 ISUMTYPE Integer Type of calculation 1 Re initiate the dose cancer risk summary option used only to zero dose history for stacked cases in the same run 2 Summary of dose by pathway 3 Summary of dose by pathway and radionuclide 4 Summary of dose cancer risk by organ cancer requires a 3001 Line to follow 5 Summary of dose cancer risk by organ and radionuclide requires 3001 Line to follow 6 Contribution to the effective dose 7 Contribution to E 50 cancer risk by radionuclide 8 Contribution to E 50 cancer risk by radionuclide sorted by dose 3 INAGE Inhalation Ingestion Mortality Morbidity intake age age group ICRP 72 model 1 3 months 0 5 years 2 1 year 5 15 years 3 5 years 15 25 years 4 10 years 25 70 years 5 15 years 0 100 years 6 Adult 7 Adult Worker ICRP 68 model 8 Acute inhalation dose ICRP 30 model RSAC 7 4 8 October 2010 4 2 3 2 This line is present only if word 2 on the 3000 line is 4 or 5 Dose summaries for up to four organs can be entered When additional dose summaries for organs are desired add additional 3000 and 3001 Dose Summary Organ Selection 3001 3000 Series lines Variable Word Name Entry 1 3001 2 INORGAN 1 Integer Organ number 4 INORGAN 4 Cancer R
181. ining in the reactor is stored in a main memory buffer and the activity released from the reactor is stored in the hold memory buffer You can choose whether the activity leaked from the reactor hold buffer or that remaining in the reactor following operations main buffer is used in further calculations When you choose the option to retain the activity remaining in the reactor after encountering a 7999 line the main memory buffer is retained for further calculations and the hold buffer is deleted Normally the activity leaked from the reactor hold buffer is used for release calculations When you choose the option to retain the activities released from the reactor during each step increment are summed to give the total amount of each radionuclide released from the reactor during the total operating period After activity is entered into the hold memory buffer it cannot be decayed until after a Fission Product Calculation and Inventory Decay End Line 1999 is encountered When you choose the option to retain the activity released from the reactor the hold memory buffer is copied to the main memory buffer for subsequent calculations and the radionuclide inventory that was remaining in the reactor is deleted After a 1200 line is encountered it remains in effect on all subsequent reactor cycle operations Cycle Line 1003 until either another 7200 line or a Fission Product Calculation and Inventory Decay End Line 1999 1s encountered
182. ion ORIGEN 2 1 Isotope Generation and Depletion Code Matrix Exponential Method CCC 371 Oak Ridge Tennessee 32 Rubinson W 1949 The Equations of Radioactive Transformation in a Neutron Flux Journal Chemical Phys 17 pp 542 547 33 Sehmel G A 1980 Particle and Gas Dry Deposition A Review Atmospheric Environment 14 pp 983 1011 34 Slade D H ed 1968 Meteorology and Atomic Energy AEC TID 24190 U S Atomic Energy Commission Silver Spring Maryland 35 SRA Shonka Research Associates Inc 1993 Software Verification and Validation Report for the WINCO RSAC 5 Code Marietta Georgia RSAC 7 6 2 October 2010 36 Till J E and Meyer H R eds 1983 Radiological Assessment A textbook on Environmental Dose Analysis Report NUREG CR 3332 U S Nuclear Regulatory Commission Washington D C 37 Turner D B 1970 Workbook of Atmospheric Dispersion Estimates Revised U S Environmental Protection Agency Research Triangle Park North Carolina 38 Wenzel D R 1973 Preliminary User s Manual for the Revised Radiological Safety Analysis Computer Program RS AC 2 ACI 139 Allied Chemical Corporation Idaho National Engineering Laboratory Idaho Falls Idaho 39 Wenzel D R 1982 RSAC 3 Radiological Safety Analysis Computer Program ENICO 1002 Idaho National Engineering Laboratory Idaho Falls Idaho 40 Wenzel D R 1990 Interim Users Manual for RSAC 4 Radiological Safety Analysis Compu
183. ion velocity m s building shielding factor RSAC 7 2 31 October 2010 atnematulcal Moaes ty exposure time to radioactivity deposited on the ground surface s A activity of radionuclide i in the plume that reaches the downwind location of the receptor dis s can be replaced using the following equation A 63 A Nig 4 e where number of atoms of radionuclide 1 released to the atmosphere decay constant for radionuclide i 67 Substituting Equation A 63 into Equation A 62 the equation for the dose becomes tp A 64 D V F N io e dt dc 9 0 This integrates to A 65 o Na Defining Ni as the number of the original atoms of radionuclide i that were in the plume that reached the downwind location of the receptor and remain undecayed at the end of the exposure the following relationship exists A 66 Na pn Substituting Equation A 66 into Equation A 65 the equation can be simplified to 1 D rZ F XIN Nj j Thus when the release to the atmosphere is expressed in atoms the integration of Equation A 62 reduces to the multiplication of the different conversion factors by the number of atoms of radionuclide i that decay during the exposure period The generalized equation when radionuclide 1 is the progeny of a long decay chain is RSAC 7 2 A 32 October 2010 atnematical Moaels Df DRCF Fis Nio e
184. is desired Radionuclide Decay Control Line 6000 Help Radionuclides to be decayed C Only radionuclides that are selected on an upcoming screen will be decayed r Inventory Printout Options individual radionuclide inventories are printed Print all fission products and any activation products actinides and daughters of actinides with positive values Same as above option except suppress short lived fission products which have no available dose conversion factors Print inventory of radionuclides that have positive values at or following first decay time Units Exponential Leakage Curies No exponential leakage corrections included Grams Corrections for exponential leakage decay will be manually entered C Becquerel Back Comment Next gt Figure 3 50 Screen 2 Radionuclide Decay Control RSAC 7 3 35 October 2010 Using RSAC 7 2 Screen 3 Optional Exponential Leakage Decay This screen appears only if Corrections for exponential leakage decay will be manually entered was chosen on screen 2 see Figure 3 51 Enter the decay time s for the exponential decay function After clicking next a prompt will appear asking if you want to change the Leakage Decay constants see Figure 3 52 If the constants have been previously entered and do not need to be changed click on No to proceed otherwise click Yes to change the Leakage Decay
185. is ensures that RSAC has been installed and is operating correctly Do you want to continue with this Case Study Verification Yes No Figure 2 2 Verifying RSAC installation view RSAC 7 2 2 October 2010 Installing RSAC 7 If yes 15 selected the installation validation will continue and all 20 examples are excuted and compared against the verified and validated results If Figure 2 3appears the installation was successfully verified This QC check should be performed each time a change is made to the operating system This assures that the change has not affected the RSAC execution capabilities If no is selected then the installation will abort and the user is returned to the main screen RSAC installation was succesfully verified Example 01 Direct Input and Decay of Radionuclides 2 Example 02 Simulated Reactor Operation with Release During Operation Example 03 Calculation of Chi Q with modifiers Example 04 Reactor Operation Transport and Output of Source Term Example 05 Dose Calculation Using FGA 11 Example 06 Simulated Reactor Operation ICRP 68 Worker Inhalation Dose Example 07 Simulated Reactor Operation ICRP 72 Public Inhalation Dose Example 08 Simulated Reactor Operation Acute Dose Inhalation Dose amp Example 09 Multiple Release Scenarios Calculating Ground Surface Example 10 Multiple Release Scenarios Calculating Cloud Gamma Dose Example 11 FGR 13 Mortality Risk Calculation
186. isk ICRP 72 Dose ICRP 30 Dose Mortality Morbidity Acute Dose 1 Adrenals Lung Bladder Small Intestine 2 Bladder Wall Stomach Wall Bone 3 Bone Surface SI Wall Breast 4 Brain ULI Wall Colon Alveolar Interstitial Region 5 Breast LLI Wall Esophagus 6 Testes Kidney 7 Esophagus Breast Leukemia 8 ET Airways Bone Surface Liver 9 Kidneys Red Marrow 10 Liver Thyroid Ovary 11 LLI Wall Kidneys Residual 12 Lungs Liver Skin 13 Muscle Spleen Stomach 14 Ovaries Pancreas Thyroid 15 Pancreas Muscle Total 16 Red Marrow Skin 17 SI Wall Brain 18 Skin Thymus 19 Spleen Bladder Wall 20 Stomach Wall Adrenals 21 Testes Esophagus 22 Thymus Ovaries 23 Thyroid Uterus 24 ULI Wall 25 Uterus 26 Effective RSAC 7 4 9 October 2010 5000 Series 4 2 4 5000 Series Dispersion Control Input The 5000 Series creates the conditions under which the release parameters will be evaluated 4 2 4 1 Dispersion Control Line 5000 Use a Dispersion Control Line 5000 to initiate input of meteorological or room release data Word Entry Description 5000 2 0 Release will be modeled using meteorological dispersion data A 5001 line will immediately follow the 5000 line 1 Release will be into a building room A 5500 line will immediately follow the 5000 line 4 2 4 2 General Meteorological Information Line 5001 Variable Word Name Entry Description 1 5001 2 UBAR Average wind velocity m s 3 S Stack height m Typical stack heights are at
187. l appear next Inhalation Parameters Dose Calculation Line 7003 Help gt AMAD 0 Activity median aerodynamic diameter micron range or gt 0 1 micron If defaults to 1 Values are rounded to 1 place of accuracy r Absorption Type Selection Default to program generated types for oxides and hydroxides Absorption types will be modified Unchanged types default to those for oxides and hydroxides Absorption types will be modified Unchanged types default to those selected to give maximum element dose lt Back Comment Next gt Figure 3 61 Screen 4A Optional Inhalation Parameters Dose Calculation RSAC 7 3 45 October 2010 Using RSAC 7 2 Screen 5A Optional Absorption Type Entry Shown only if option 2 or 4 is chosen for Absorption Type Entry on screen 4A see Figure 3 62 Scroll through the list and click on the desired element A pop up screen will appear showing the valid lung clearance classes for the chosen element Select the desired lung clearance class and click on Continue Absorption Entry Line 031 ES gt Help Symbol _ Atomic Element Default Type Defined Type 088 actinium Slow Ag 047 silver Slow Al 013 aluminum Moderate Am 085 americium Moderate Ar 018 argon 033 arsenic Moderate At 085 astatine Moderate Au 073 gold Slow Ba 056 barium Fast Be 004 beryllium Slow Bi 083 bismuth Moderate Bk 097 berkelium Moder
188. l be enabled Cloud Gamma Dose Calculation Line 9000 Help Cloud Gamma Model Selection Calculations are made using the Semi infinite Model Decay Time Decay time for exponential decay function seconds If 0 RSAC defaults to program calculated time necessary to give 100 releases 0 Finite Model 0 Semr infinite Model lt Back Comment Next gt Figure 3 77 Screen 2 Cloud Gamma Dose Control 3 3 Critdos Subroutine CRITDOS calculates the prompt neutron doses using the NRC Regulatory Guide 3 33 RG 3 33 equations Both unshielded and shielded direct doses are calculated based on the total fission yield of the postulated criticality the distance from the criticality to the receptor equivalent concrete thickness of the shield and the system being analyzed i e neutron escape fraction based on the system size The gamma and neutron attenuation factors given in RG 3 33 vary according to the thickness of the concrete That is the first few inches of concrete are not as effective at attenuating radiation as the remaining thickness of concrete Equations have been derived and put into CRITDOS that take this into account In addition the equations for concrete shielding that is less than 12 in thick have been modified to make them more realistic i e best estimate rather than conservative The equations for calculating a dose in rem from 3 33 are based on 10 of the neutrons
189. lculations If zero defaults to 0 7 4 2 6 2 Dose Calculation Control Line 2 7001 Variable Word Name Entry Description 1 7001 2 3 TINHA d TB being made 15 years defaults to 1 year 5 BS 6 OCFACT RSAC 7 Occupancy factor for ground surface dose calculations entry of word is optional If zero defaults to 1 0 4 24 October 2010 4 2 6 3 Optional Selection of Organs Line 7002 Variable Word Name Entry Description 1 7002 User selection of organs 2 IO 1 Integer Organ number N 1 ION Mortality Morbidity ICRP 72 Dose ICRP 30 Dose Cancer Risk 1 Adrenals Lung Bladder 2 Bladder Wall Stomach Wall Bone 3 Bone Surface SI Wall Breast 4 Brain ULI Wall Colon 5 Breast LLI Wall Esophagus 6 Colon Testes Kidney 7 Esophagus Breast Leukemia 8 ET Airways Bone Surface Liver 9 Kidneys Red Marrow Lung 10 Liver Thyroid Ovary 11 LLI Wall Kidneys Residual 12 Lungs Liver Skin 13 Muscle Spleen Stomach 14 Ovaries Pancreas Thyroid 15 Muscle Total 16 Red Marrow Skin 17 SI Wall Brain 18 Skin Thymus 19 Spleen Bladder Wall 20 Stomach Wall Adrenals 21 Testes Esophagus 22 Thymus Ovaries 23 Thyroid Uterus 24 LLI Wall Effective 25 Uterus 26 Effective Line 7003 Example Runs Acute Dose Small Intestine Bone Marrow Lung Alveolar Interstitial Region AMAD only is used with the ICRP 30 model A value must be present but it is ignored in other calcula
190. le stage and the hazardous nature of each facility s operations should be considered when using this standard Alternative methods to those described in this standard may be used provided they result in compliance with applicable requirements Another objective of this guidance 15 to encourage robust software quality methods to enable the development of high quality applications This section describes the installation procedures for loading RSAC 7 2 onto a personal computer The minimum hardware and software requirements are listed This section also identifies the point of contact for questions about the program and a summary of quality assurance activities conducted to ensure the integrity of RSAC 2 4 Hardware and Software Requirements RSAC 7 2 runs on an personal computer or compatible computer running Windows XP Vista and Windows 7 Although the code does run on earlier versions of Windows operating systems it has not RSAC 7 2 1 October 2010 Installing RSAC 7 been validated on those earlier versions of Windows The computational program is written in FORTRAN and the user interface is written in VisualBasic 2 2 Loading Instructions and Validation of Installation Place the RSAC 7 2 CD in the CD reader Double click on My Computer Double click on the drive letter for your CD reader Double click on Setup and answer the questions You will be requested to have a key to install the software A readme file is included with the soft
191. least 2 5 H times the building height 4 Mixing layer depth m If zero defaults to 400 m 5 ADEN Air density If zero defaults to 1 099E 3 average density for 5000 ft altitude 6 AMBDA Wet deposition scavenging coefficient 1 s Set equal to zero when no plume depletion by wet deposition 15 desired This coefficient simulates rainout of the plume and will very quickly deplete the release Values for wet deposition scavenging coefficient range from 4 0 E 6 to 3 0 E 3 s with a median value of 1 5 E 4 Avoid too large a value to prevent plume overdepletion 7 SWI Integer Plume depletion by dry deposition 0 No 1 RSAC 7 4 10 October 2010 5000 4 2 43 Deposition Velocities Line 5002 Entering this line is optional However the line must be present if you are making ingestion or ground surface dose calculations Variable Word Name Entry Description 1 5002 Deposition velocity m s for 2 DV 1 Solids 3 DV 2 Halogens 4 DV 3 Noble gases 5 DV 4 Cesium 6 DV 5 Ruthenium 4 24 4 Downwind Distance Lines 5101 Variable Word Name Entry Description 1 Integer 510X X 1 2 etc 2 DIE 1 Downwind distance m N DIE N Enter a maximum of eight downwind distances The valid range of downwind distances is 10 to 1 5 m Diffusion for distances less than 1 E 2 m is extrapolated RSAC 7 4 11 October 2010 5000 4 2 4 5 Leakage Decay Constants Lines 5201 Use leakage decay co
192. lection is the mixing depth This depth acts as an effective ceiling to the release Mixing depths are difficult to determine The default value is 400 meters Other values are identified below Figure 3 38 Help Information RSAC 7 3 25 October 2010 Using RSAC 7 2 Screen 4 Optional Dry Deposition Variables This screen is only displayed when YES has been selected for Plume depletion by dry deposition on screen 3 see Figure 3 39 It is important to understand that if plume depletion is not requested the options for calculation of ingestion and ground surface dose will not be available If the RSAC 7 2 default variables are chosen then the Deposition Velocities will be those defined in Figure 3 39 Ensure that the deposition velocities are selected based on facility specific recommendations Deposition Velocities Line 5002 Help Deposition Velocity meters second lt Range lt 0 5 0 001 Solids 0 01 Halogens Deposition Velocities are for the p Noble Gases total activity deposited on both the ground and plants 0 001 Cesium 0 001 Ruthenium Comment Continue Figure 3 39 Screen 4 Optional Dry Deposition Variables RSAC 7 3 26 October 2010 Using RSAC 7 2 Screen 5 Downwind Distances Enter one or more unique downwind distances see Figure 3 40 If a duplicate distance is entered you will be alerted and the field in error will automatically be highlighted Be careful
193. lement RSAC 7 2 also models the effects of high efficiency particulate air HEPA filters or other cleanup systems RSAC 7 s meteorological capabilities include Gaussian plume diffusion for Pasquill Gifford Hilsmeier Gifford and Markee models RSAC 7 2 possesses the unique ability to model Class F fumigation conditions Optionally users supply plume standard deviations os or atmospheric diffusion x Qs to the code as input data See Appendix A for mathematical models RSAC 7 2 also includes corrections for deposition wet and dry plume rise jet and buoyant resuspension and release in a room and building wake Doses are calculated through inhalation immersion ground surface and ingestion pathways and cloud gamma dose from semi infinite plume model and finite plume model RSAC 7 calculates internal dose using the dose conversion factors and methodology from both International Commission for Radiological Protection ICRP 26 30 and ICRP 60 68 72 In addition to the calculation of lifetime dose RSAC 7 calculates the acute 24 hour dose from radiological sabotage events RSAC 7 is an excellent tool to evaluate accident conditions in emergency response scenarios and to evaluate safety basis accident conditions 1 1 RSAC History RSAC was originally developed and written in assembly language MAP for the IBM 7044 44 in 1966 by R L Coates and N R Horton for support of the Advanced Test Reactor dose consequence calculations In 1968 a
194. m 148 gt stable 561490 3 44E 01 1 s 9 27E 04 1 0 1 0 0 3 Ba 149 gt La 149 1 0 RSAC 7 2 B 30 October 2010 RSAC 7 2 Nuclear Data Library 571490 1 05 00 1 s 7 02E 02 1 0 1 1 0 3 La 149 gt Ce 149 1 0 581490 5 30E 00 1 s 7 10E 01 1 0 1 2 0 3 Ce 149 gt Pr 149 1 0 591490 2 26E 00 2 m 2 89E 01 1 0 1 3 0 Pr 149 gt Nd 149 1 0 601490 1 73E 00 3 h 1 81E 02 1 1 1 4 0 Nd 149 gt Pm 149 1 0 610050 1 00 18 5 y 1 70E 01 1 0 1 5 2 pseudo gt Pm 149 1 0 611490 5 31E 01 3 h 3 12E 05 1 1 1 6 1 32 02 Pm 149 gt stable 621490 2 00 15 5 0 1 1 1 0 1 Sm 149 gt stable 610060 1 00 17 5 3 73E 03 1 0 1 0 2 pseudo gt Pm 115 1 0 611500 2 68E 00 3 h 2 82E 07 1 1 1 1 0 Pm 150 gt stable 631500 3 69 01 5 0 1 1 1 0 1 Eu 150 gt stable 631503 1 28 01 3 h 0 1 1 1 0 1 Eu 150b gt stable 651500 3 48 00 3 h 0 1 1 1 0 1 Tb 150 gt stable 571510 9 54E 01 1 s 8 95 04 1 0 1 0 0 3 La 151 gt Ce 151 1 0 581510 1 02 00 1 5 7 58 02 1 0 1 1 0 3 Ce 151 gt Pr 151 1 0 591510 1 89E 01 1 s 2 24E 01 1 0 1 2 0 3 151 gt Nd 151 1 0 601510 1 24 01 2 1 19 01 1 0 1 3 0 Nd 151 gt Pm 151 1 0 611510 2 84 01 3 h 1 77E 03 1 0 1 4 1 03E 02 Pm 151 gt Sm 151 1 0 621510 9 00E 01 5 y 3 80E 06 1 1 1 5 7 26 02 Sm 151 gt stable 561520 7 55E 01 1 s 1 96 08 1 0 1 0 0 3 152 gt La 15
195. mation Meeting C A Mawson Editor AECL 2787 pp 602 613 24 NRC U S Nuclear Regulatory Commission 19772 Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50 Appendix I Regulatory Guide 1 109 Revision 1 Washington D C 25 NRC 1977b Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light Water Cooled Reactors Regulatory Guide 1 111 Revision 1 Washington D C 26 NRC 1982 Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants Regulatory Guide 1 145 Revision 1 Washington D C 27 NQA 1 2008 Quality Assurance Requirements for Nuclear Facility Applications Subpart 2 7 Quality Assurance Requirements for Computer Software for Nuclear Facility Applications 28 Ramsdell J V Jr Simonen C A 1997 Atmospheric Relative Concentrations in Building Wakes Report NUREG CR 6331 U S Nuclear Regulatory Commission Washington D C 29 Richardson L C 1968 User s Manual for the FORTRAN Version of RSAC IDO 17261 Idaho National Engineering Laboratory Idaho Falls Idaho 30 RSIC Radiation Shielding Information Center 1981 RSIC Data Library Collection DRALIST Radioactive Decay Data for Application to Radiation Dosimetry and Radiological Assessments DLC 80 Oak Ridge Tennessee 31 RSIC 1991 RSIC Computer Code Collect
196. me However limitations are placed on the maximum value for tua so that the sum of ta and tia do not exceed the vegetable exposure time to the plume for a chronic release see t in Equation A 38 It is assumed that cattle would continue to graze following an acute release of radioactivity The value for tra used to calculate the concentration in and on forage is therefore automatically adjusted by RSAC 7 2 so that the sum of t and tpa equals the forage exposure time for a chronic release Tritium is released from vegetation following an acute release with a nominal 1 day half time The acute tritium ingestion model assumes that the harvest occurs at a constant rate beginning when the acute release is initiated The equation used to calculate the concentration of tritium in vegetation during and following an acute release is aga NEXU A 60 Q H t tha Ay where Cha concentration of tritium in vegetation following an acute release pCi kg 2 778 x 10 10x10 pCi Ci 1 0 x 10 g kg 3 6 x 10 s h fraction of annual crop that is contaminated by acute release acute release rate of tritium Ci h RSAC 7 2 A 30 October 2010 atnematical Models release rate of tritium in vegetation following termination of release h Ap tha harvest duration time after acute release h The remaining variables and constants used in Equation A 60 are as defined in Equation A 42 The units for t and tpa are expr
197. mospheric water H absolute humidity g m The equation used to calculate the concentration to carbon 14 in vegetation from chronic releases is Cs 3 169107 Qu L Tuin where concentration of carbon 14 in vegetation pCi kg annual release of carbon 14 Ci yr 011 fraction of total plant mass that is natural carbon concentration of natural carbon in the atmosphere g m gt I A 3 2 2 Acute Release The ingestion equations presented in Regulatory Guide 1 109 NRC 1977a apply to chronic releases Unfortunately there is no consensus model for the calculation of ingestion doses from an acute release Therefore it was necessary to develop the model used in RSAC 7 2 The model assumes that consumption of contaminated vegetation from an acute release occurs at a constant rate during the acute release period and during the harvest duration time that follows the acute release period The activity on vegetation pCi m collected during the acute release period for radionuclide i can be calculated using the following equation RSAC 7 2 A 26 October 2010 atnematical IVioqels q 1 e e dt A 45 0 where Ap activity on vegetation collected during the acute release period d deposition rate of radionuclide i pCi m h t acute release period h Ag effective removal rate constant for radionuclide i from foliage surfaces h Integrating Equation A 45 the equation for Ap becomes Ap
198. n 0 where Nj number of atoms of radionuclide j in the plume that reaches the downwind location of the receptor Nj number of atoms of radionuclide j that exist at the end of the exposure period including those that ingrow from precursors in the decay chain The ground surface dose calculated by RSAC 7 2 is the dose that a receptor would receive if it 1s present for the entire exposure period When a ground surface dose is being calculated for work area it should be remembered that work normally occurs for only 40 hours during a 168 hour week and appropriate corrections should be made The time t has been expressed in seconds in the above equations for convenience however user input of the variable in Section 4 1 Dose Calculation Control Line 2 7001 is in years A 3 4 Air Immersion Dose RSAC 7 2 contains an option to calculate air immersion doses using Federal Guidance Report No 12 Eckerman 1993 DRCFs This model accurately calculates the plume gamma dose when the plume size is large compared to the mean free path of the gamma rays However when the plume size is small compared to the mean free path of the gamma rays this model can overestimate doses by several decades When the plume has not diffused to the ground level the model can underestimate doses by several decades Before this model is used an evaluation should be using the finite plume cloud gamma model to ensure that the two models have reasonably converged The
199. n at distances greater than 10 to 15 miles especially if meteorological conditions are likely to be different from those at the source of the release Long range projections of dose conditions are better calculated with mesoscale regional models that are able to account for multiple weather observations Nevertheless some applications may require 50 mile or greater radius analysis to meet requirements e g Environmental Impact Statements EISs or Probabilistic Safety Assessments PSAs e Terrain Gaussian models are inherently flat earth models and perform best over regions of transport where there is minimal variation in terrain Because of this there is inherent conservatism and simplicity if the environs have significant nearby buildings tall vegetation or grade variations not taken into account in the dispersion parameterization e Momentum RSAC does not account for momentum driven releases from detonation type events Briggs Algorithm In plumes arising from fire related source terms the user should exercise caution with the models that use the Briggs algorithm such as RSAC The Briggs approach for accounting for sensible energy in a plume is valid for open field releases not impacted by buildings and other obstacles or if used in combination with building wake effects Dose Conversion The user should ensure that the dose conversion factors used in RSAC applicable to the radionuclides in the source t
200. n of the crop Translocation factors for leafy vegetables and forage are set to 1 Translocation factors to the edible portions of produce crops are taken from Boone et al 1981 The concentration factor for root uptake Biy is element dependent Root uptake factors have been taken from literature developed to update the NRC Regulatory Guide 1 109 model published by Baes et al 1984 The root uptake factors in Table 7 are dimensionless and express pCi kgpiant per The soil weight is for dry soil Root uptake factors for forage are for forage measured in dry weight while root uptake factors for produce are for produce measured in wet weight Both the concentration of milk and C the concentration in meat depend upon the fraction of the year that the livestock is grazing on pasture as opposed to consuming stored feed The equation used to calculate the concentration of radionuclide i in the animal s feed is A 39 Ci 2 f f C 1 f f 1 f Cj where C concentration of radionuclide i animals feed pCi kg f fraction of the year that animals graze on pasture f fraction of daily feed that is pasture grass when the animal grazes on pasture concentration of radionuclide i on pasture grass pCi kg Ci concentration of radionuclide i in stored feed pCi kg Both C and Cj are calculated using Equation A 38 with appropriate constants RSAC 7 2 A 24 October 2010 Mathematical Models Th
201. nhalation Dose This example evaluates all the pathways using the Adult dose conversion factor from ICRP 72 for inhalation and ingestion 8 Simulated Reactor Operation Acute Dose Inhalation This example evaluates the 24 hour acute dose from a release from an operating reactor 9 Multiple Release Scenarios Calculating Ground Surface This example demonstrates the capabilities of RSAC with respect to various release conditions while calculating ground surface dose 10 Multiple Release Scenarios Calculating Cloud Gamma Dose This example demonstrates the capabilities of RSAC with respect to various release conditions while calculating cloud gamma dose 11 FGR 13 Mortality Risk Calculation This example evaluates mortality risk from release of an operating reactor 12 FGR 13 Morbidity Risk Calculation This example evaluates morbidity risk from release of an operating reactor 13 Resuspension Calculation This example evaluates inhalation dose from resuspension 14 FGR ICRP 30 Ingestion Dose Chronic and Acute Release This example demonstrates both models of ingestion Chronic and Acute using FGR 11 values 15 Multiple Release Scenarios Calculating Air Immersion Dose This example demonstrates the capabilities of RSAC with respect to various release conditions while calculating air immersion dose 16 ICRP 72 Ingestion Dose Chronic and Acute Release This example demonstrates both models of ingestion Chronic and Acute using ICRP 72 Adul
202. nstants to calculate the radionuclide inventory decay before release to the environment When the radionuclide inventory decay has already been corrected to the actual amount to be released treat the release as an instantaneous release as described below to avoid double decay Variable Word Name Entry Description 1 Integer 52XX XX 01 02 etc 2 K1 1 Linear constant in the leakage rate function 87 3 K2 1 Exponential constant in leakage rate function 87 Enter additional sets of two values on this and following lines up to a maximum of 10 sets Values of K1 and K2 can be either positive or negative If a constant leakage is desired set K2 0 and K1 the reciprocal of the time that it takes for the activity to be released to the atmosphere The use of one set of leakage constants is normally sufficient for most calculations When an instantaneous release is desired enter only one set of leakage constants and set K1 1 K2 0 and the exposure time to the plume to 1 second When decay correction is desired for a constant release set the reciprocal of the release time s K2 0 and the decay time for the leakage rate function the time s over which the release occurs see Appendix A Equation A 28 When an exponential release as a function of time is desired set K2 1 where Tj is the release half time s for the exponential decay function K1 can be calculated using the following equation L K 2
203. nt dependent parameters used to calculate concentrations in crops A 22 Table A 8 Comparison of calculated buildup factors for air to Berger s buildup factors A 37 Table A 9 Photon energy groups and dose conversion A 38 ix Introduction 1 INTRODUCTION Radioactive releases from nuclear facilities may contribute to radiation exposure through a number of pathways external exposures by direct radiation from plumes or deposited radionuclides or internal exposures from inhalation or ingestion of radioactive material The Radiological Safety Analysis Computer RSAC Program calculates the consequences of a release of radionuclides to the atmosphere RSAC 7 2 is the current release and RSAC 7 is the version Using a personal computer RSAC 7 users generate a fission product inventory calculate inventory decay and ingrowth fractionate the inventory during transport through processes facilities and the environment model the downwind dispersion of the activity and calculate doses to downwind individuals A fission product inventory is calculated from reactor operating history and is used to simulate a nuclear criticality accident Radionuclide inventories are also directly input into RSAC 7 2 if desired Source term modeling allows for complete progeny ingrowth and decay during all accident phases RSAC 7 2 release scenario modeling allows fractionation of the inventory by chemical group or e
204. nts not described by Element Fractionation Lines 1101 4 2 1 6 Element Fractionation Lines 1101 Use these lines only if you want fractionation by element Word Entry Description Integer 11XX XX 01 02 etc Integer Atomic number of element Fractionation for above element 2N Integer N atomic number 2N 1 x N fractionation Enter additional sets of two values on this and following lines until all desired elements have been described The number of sets per line is optional 4 2 1 7 Release During Simulated Reactor Operations Line 1200 Use this optional control line to simulate radionuclide releases from a reactor while it is operating Insert a Release During Fission Product Calculation Line 1200 immediately following either the Initial Reactor Data Line 1001 or the Cycle Line 1003 to modify the reactor operations requested by the 1001 or 1003 lines RSAC 7 4 4 October 2010 2000 Series A Reactor Linear Leak Rates Line 1201 must immediately follow a 1200 line Activity 1s removed from the reactor incrementally using the number of chosen steps 1 to 100 over the entire reactor operating cycle requested by a 7001 or 1003 line The number of steps should reflect the need for resolution of the release The more steps the more exact the totals will be for the shorter lived radionuclides RSAC 7 2 has two memory buffers for storing radionuclide inventories main and hold The activity rema
205. o give maximum element dose 4 User input of classes on 703X lines Unchanged classes default to those selected to give maximum element dose Add a negative sign in front of word 3 and the values used for all selected clearance classes including changes made on 703X lines will be output 4 2 6 5 Optional Ingestion Dose Calculation Control Line 7004 This line is present only if IMOD word 2 on the 7000 line is 3 Variable Word Entry Description 1 7004 RSAC 7 4 26 October 2010 Example Runs 2 ITRAN Integer Ingestion transfer parameter control 0 Program default transfer parameters used Program default transfer parameters are used and printed out 2 Read ingestion transfer parameters from external file TRANCON 3 ITYPE Integer User control for ingestion calculations 0 Chronic release with program default parameters 1 Acute release with program default parameters 2 User supplied ingestion parameters on 705X lines 4 ATIME Time period d that crops are exposed to contamination during the growing season A time period of 260 days signifies a chronic release with vegetable and forage exposure times to the plume as indicated in Series 7000 Ingestion Constants Line 3 7052 A time period of 60 days signifies an acute release ITYPE 0 Variable not used ITYPE 1 Time must be between 0 04167 day 1 hour and 60 day ITYPE 2 If zero or gt 60 defaults to 60 days O
206. o the inversion base Yanskey et al 1966 diffusion for a fumigating plume can be calculated using Equation A 12 Atmospheric dispersion at various heights above the ground level must be calculated to estimate cloud gamma doses from a finite plume The form of the time integrated universal diffusion equation then becomes 2 2 x gt z h z h W y Z Q 2nu 0 0 o o A 20 where z vertical distance from the plume centerline m RSAC 7 2 7 October 2010 atnematical Modelis INTENTIONALLY BLANK RSAC 7 2 A 8 October 2010 atnematical Moaels Va RSAC 7 2 2010 A 2 2 Plume Deposition An estimate of the amount of radioactivity that is deposited on the ground must be made to calculate ground surface resuspension and ingestion doses Dry deposition calculations in RSAC 7 2 are made using a deposition velocity as defined by Chamberlain 1953 as A 21 where dry deposition velocity m s deposition flux Ci m s airborne concentration Ci m The quantity of deposited radioactive material o 1s then calculated using the following equation A 22 0 0 V t where surface contamination Ci m deposition velocity m s time that the ground is exposed to the plume s Dry deposition velocities are a function of particle size and chemical species Values recommended for use in RSAC 7 2 are published by Sehmel 1980 Wet deposition in RSA
207. onal depositions for an aerosol with an AMAD of 1 um b NA not applicable RSAC 7 2 A 17 October 2010 atnematical Moaels Activity median aerodynamic diameter 4 5 10 20 30 50 7080 90 95 99 Percent deposition Figure A 2 Deposition of dust in the respiratory system Lymph nodes Figure 3 Clearance pathways for the ICRP 30 model RSAC 7 2 A 18 October 2010 atnematica els A 3 2 Ingestion Dose A 3 2 1 Chronic Release The calculation of ingestion dose from a chronic release is based on the models and equations from Regulatory Guide 1 109 NRC 1977a Dose pathways from the ingestion of vegetation meat and milk have been included for activity deposited on the ground plane The equation used to calculate the total ingestion dose from the pathways is Deel cteut CP au CF aU A 37 where Dj annual dose equivalent to organ from ingestion of food contaminated from the atmospheric release and subsequent deposition of radionuclide 1 rem yr DFI ingestion dose factor for radionuclide i and organ j rem pCi U U UU usage factors for produce nonleafy milk meat and leafy vegetables kg yr and L yr for milk fa fi respective fractions of the ingestion rates of produce and leafy vegetables that are produced in the garden of interest C Cm ed y Gr concentrations of radionuclide i in produce nonleafy vegetables milk meat and fresh vegetables respectively pCi kg The defa
208. onuclide s neutron capture cross section for the radionuclide 0 neutron flux n cm s RSAC 7 2 A 2 October 2010 atnematica where CONV POWER Yie Id eis Il Il S CONV POWER Yield A 4 the conversion factor from power to fission fissions W s the reactor power W the fission yield for the i radionuclide of the decay chain atoms fission The general solution as formulated by Rubinson 1949 for the contribution to the n radionuclide from the radionuclide precursor is n l n 1 Q 0 S X 5 ai j m j i By summing all the precursors of a particular nuclide the general solution for the total number of atoms for the k radionuclide of the decay chain is obtained RSAC 7 2 2010 k k 1 k l e it 5 6 m 1 i m i m uj ui j i For convenience the linear operator is defined as follows k 1 k 1 Sin A gt k A 7 1 i m i m Ij j m 1 3 October atnematical Viodels Therefore the buildup equation can be written as elt A 8 1 2 Radionuclide Decay The differential equations for the decay rate are similar to those for fission product buildup except the source rate is considered to be zero The general solution for the decay equation is A 9 N t E e where the total number of atoms for
209. organs Elements will be selected C Organs will be selected lt Back Comment Next gt Figure 3 59 Screen 2 Dose Control Calculation RSAC 7 3 43 October 2010 Using RSAC 7 2 Screen 3A Optional Inhalation Dose Control This screen appears only when option 1 2 7 or 8 is chosen for the Type of Dose Calculation on screen 2 Enter the breathing rate m s and decay time s for exponential decay function see Figure 3 60 Age at Intake Line 7000 x Help Member of the Public ICRP 72 1 micron AMAD 10 Years 15 Years Adult Adult worker inhalation dose ICRP 68 5 micron AMAD C 1 day acute inhalation dose ICRP 30 model lt Back Comment If 0 RSAC defaults to program calculated time necessary to give 100 releases Exposure Time in seconds for a release to a room o Decay Time for exponential decay function seconds Respirable Fraction lt Back Comment Next gt Figure 3 60 Screen 3A Optional Inhalation Dose Control RSAC 7 3 44 October 2010 Using RSAC 7 2 Screen 4A Optional Inhalation Parameters Dose Calculation This screen appears only if option 2 or 8 is chosen for the Type of Dose Calculation on screen 2 Enter activity median aerodynamic diameter AMAD and whether default lung clearance classes are to be used see Figure 3 61 If user input of lung clearance classes is chosen the Clearance Class Entry screen wil
210. own in Figure A 2 The model is intended for use with aerosol distributions with AMADs between 0 2 and 10 um Provisional estimates of deposition further extending the size range are given by the dashed lines The minimum allowable particle size is 0 1 um AMAD The model assumes complete deposition in the NP region for all AMAD of greater than 20 um Correction is made for the chemical state of each radionuclide according to the ICRP 30 designated clearance classes of D W and Y as shown in Table A 4 for the clearance pathways shown in Figure A 3 The allowable clearance classes for each element and the RSAC 7 2 default classes are presented in Appendix D RSAC 7 2 A 16 October 2010 Mathematical Models Table A 4 ICRP 30 mathematical model used to describe clearance from the respiratory system Class D W Y Region Compartment T day F T day F T day F NP a 0 01 0 5 0 01 0 1 0 01 0 01 Dyp 0 30 b 0 01 0 5 0 40 0 9 0 40 0 99 TB 0 01 0 95 0 01 0 5 0 01 0 01 0 08 d 0 2 0 05 0 2 0 4 0 2 0 99 0 5 0 8 50 0 15 500 0 05 f 1 0 0 4 1 0 0 4 Dp 0 25 g NA NA 50 0 4 500 0 4 h 0 5 0 2 50 0 05 500 0 15 L i 0 5 1 0 50 1 0 1000 0 9 j NA NA NA NA 0 1 a D W and Y refer to lung retention classes with clearance half times of 0 5 50 500 days respectively T refers to the removal half times and F refers to the compartmental fractions The values given for Dyp and Dp left column are the regi
211. position of Aerosol and Vapour Clouds AERE HP R 1261 Harwell Great Britian 9 Chu S Y F L P Ekstrom and R B Firestone The Lund LBNL Nuclear Data Search Version 2 0 Ernst O Lawrence Berkeley National Laboratory Berkely California and LUND University Sweden February 1999 10 Clawson K L G E Start N R Ricks 1989 Climatography of the Idaho National Engineering Laboratory 2nd Edition DOE ID 12118 U S Department of Commerce National Oceanic and Atmospheric Administration Environmental Research Laboratories Air Resource Laboratory Field Research Division Idaho Falls Idaho December 11 Coates L and Horton 1966 RSAC A Radiological Safety Analysis Computer Program IDO 17151 Idaho National Engineering Laboratory Idaho Falls Idaho 12 Croff A G R L Haese N B Gove 1979 Updated Decay and Photon Libraries for the Origen Code ORNL TM 6055 Oak Ridge National Laboratory Oak Ridge Tennessee 13 Croff A G 1980 ORIGEN2 A Revised and Updated Version of the Oak Ridge Isotope Generation and Depletion Code ORNL 5621 Oak Ridge National Laboratory Oak Ridge Tennessee 14 DOE 1994 Airborne Release Fractions Rates and Respirable Fractions for NonReactor Nuclear Facilities DOE HDBK 3010 94 U S Department of Energy Washington D C 15 Eckerman K F and Ryman J C 1993 External Exposures to Radionuclides in Air Water and Soil Federal Guidance Report No 12 EPA 402 R
212. quested the requirements of line 2002 must be followed 1 Same as for entry 0 except the previous radionuclide inventory is retained and the activity of the chosen radionuclide is changed to that indicated on either the Radionuclide Entry Lines or an external file 1 Same as for entry 0 except the previous radionuclide inventory is retained and the activity of the chosen radionuclide is added to that indicated on either the Radionuclide Entry Lines or an external file 3 0 curie 1 gram 2 Bq RSAC 7 4 6 October 2010 2000 Series 4 2 2 2 Radionuclide Entry Lines Radionuclide Entry Lines are present only when an external file 2002 line option is not selected Following the last entry of an inventory for a radionuclide you must enter an nput End Line 2999 Variable Word Name Entry Description 1 NUCL Integer Radionuclide identification number see 4000 Series Radionuclide Data Change Line An alternate entry can be made by replacing NUCL with the element symbol in capital letters followed by the mass number and metastable state indicator Examples of allowable styles include 5137 Cs 137 Cs 137 Bal37m Ba 137m Ba 137m CS137 CS 137 CS 137 137 BA 137M BA 137M 2 The amount in curies grams as specified in the 2000 line of this radionuclide Make additional line entries until all desired radionuclides have been entered into the radionuclide inventory Only one radionuclide and associated curie
213. r is the next radionuclide in the library zl number ofradionuclides in the library that are to be skipped over before the daughter is found The NGROUP column contains an integer element group code where 1 solid 2 halogen 3 nobel gas 4 cesium 5 ruthenium The ISTART column contains an integer that points to the beginning of the chain Subtract ISTART from the library position to find the beginning of a chain The XSECT column contains the average neutron cross section in barns Half lives are primarily from the Evaluated Nuclear Structure File ENSDF as presented in the Lund LBNL Nuclear Data Search Pseudo radionuclides used to correct for activation of fission products were suppressed RSAC 7 2 B 2 October 2010 RSAC 7 2 Nuclear Data Library Activation products actinides and the daughters of actinides are signified by a cross section value of 1 Inventories for these radionuclides are not calculated by RSAC 7 however you may input them directly for dose calculations Many short lived fission products decay to longer lived daughter products Often these short lived fission products do not have available dose conversion factors Therefore RSAC 7 2 only uses them to correct fission product inventories calculated by RSAC 7 2 to match those calculated by ORIGEN 2 Many of these short lived fission products have never been observed experimentally and their decay related properties are derived from calculations bas
214. r wet weight j UFMP Meat usage factor kg yr wet weight 5 UFM Milk usage factor L yr 6 FG Fraction of stored vegetables from garden 7 FY Fraction of fresh RSAC 7 vegetables from garden 4 28 Default Variable Value Name 520 U 64 Ut 110 U 310 U 0 76 f 1 0 fi October 2010 Ingestion Constants Line 2 7052 Word Variable Name RFI RRC ETV ETM Description 7052 Retention factor for activity on forage Retention factor for activity on vegetables Retention factor for iodines on forage Removal rate constant for crops 1 h Vegetable exposure time to plume for chronic release d Forage exposure time to plume for chronic release d HTO removal half time d Ingestion Constants Line 3 7053 Variable Word Name Description 1 7053 2 SD Effective surface density for soil kg m 3 THS Stored vegetable holdup time after harvest d RSAC 7 4 29 Example Runs Default Variable Value Name 0 57 r 0 2 r 1 0 r 0 0021 Aw 60 30 ts 1 Ap Default Variable Value Name 225 P 60 tn October 2010 4 5 6 TRAN 7 TSLA Fresh vegetable holdup time after harvest d Animals daily forage feed kg day dry weight Feed milk receptor transfer time d Slaughter to consumption time d Ingestion Constants Line 4 7054 Variable Word Name Description 1 7054 2 FPAST
215. rains and releases from a few to 15 minutes Markee os Clawson et al 1989 were also developed for a desert terrain however they were developed for releases from 15 to 60 minutes in duration Pasquill Gifford os are presented in Nuclear Regulatory Commission NRC Regulatory Guide 1 145 NRC 1982 and by Slade 1968 from the Prairie Grass experiments for effluent releases with durations of 10 to 60 minutes Other meteorological options available in RSAC 7 2 are corrections for plume rise using models by Briggs 1969 building wake corrections Ramsdell 1997 and plume depletion using modeling of Markee 1967 and Chamberlain 1953 1 2 5 6000 Series Radionuclide Inventory Decay for Printout This series allows the user to calculate the radioactive decay of the entire radionuclide inventory or of selected radionuclides for printout Decay of the radionuclide inventory for subsequent dose calculations is not done in this series but in the 1000 Series If downwind distances have been previously specified in the meteorological section of the program 5000 Series decay times are calculated for each downwind position Alternately the user can directly specify decay times in this series Radionuclide inventory printout options are then available Inventories for activation products and actinides are printed only when 2000 Series input has been used to enter these radionuclides RSAC 7 1 5 October 2010 Capabilities 1 2 6 7000 Series
216. rger is presented in Table A 8 An exact solution to Equation A 70 does not exist The equation is solved using numerical integration techniques An examination of the function being integrated showed that the function can vary rapidly near the receptor Therefore integration is accomplished by breaking the integral in the X Y and Z directions each into three separate regions each using the Gaussian quadrature for an arbitrary interval Abramowitz and Stegum 19647 This allows the regions closest to the receptor or near the plume centerline to be integrated using closely spaced mesh points while the outer regions are integrated using a coarser distribution of mesh points When the dose is being calculated for an elevated release and at a crosswind distance from the plume centerline up to 15 integration regions may be used However whenever possible problem symmetry is used to reduce the number of integration regions and thereby the computer running time RSAC 7 2 A 35 October 2010 Mathematical Models RSAC 7 2 integrates the activity in the plume using gamma rays distributed the nine energy groups presented in Table A 9 The RSAC 7 2 photon library was developed using photon energies from the Evaluated Nuclear Structure File ENSDF as presented in the Lund LBNL Nuclear Data Search Chu 1999 Photons were energy weighted in each of the nine energy groups A 3 5 2 Semi infinite Model This model is very similar to that used to calculat
217. rintout 3 34 3 2 6 7000 Series Internal External Dose Calculation sse 3 42 32 7 9000 Series Cloud Gamma Dose Calculatioti eai snake rbd torar secta ains 3 60 3 3 Critdos Subroutine uuu rese cH RE 3 60 3 4 MetCond Subro tite eem Dette tete ae e ERR CRT ER a Sa oe 3 62 Reading the RSAC 7 2 INPUT Filet na napaka err rn ee heim edet rv ri ree 4 4 1 42 Calculation Title Taine cise u aaa o Ett rd Ee RE RR de LOIS ER FH PR 4 2 4 2 1 1000 Series Fission Product Inventory Calculation and Inventory Decay 4 2 4 2 2 2000 Series Direct Radionuclide Input sese 4 6 4 2 3 3000 Series Dose Summary Option ssssssssssseeeeeneee ener 4 8 4 2 4 5000 Series Dispersion Control Input 4 10 4 2 5 6000 Series Radionuclide Inventory Decay for Printout 4 18 4 2 6 7000 Series Internal External Dose Calculation sese 4 22 4 2 7 9000 Series Cloud Gamma Dose Calculation see 4 32 gt EXAMPLE RSAC 7 2 RUNS tentum ORE ifie ebat DR HOMI P EAE Diti 5 6 REFERENCES ER MORI PEDE e erae nre Rope
218. rol Line 5400 Help Type of Diffusion Definition C set of standard deviations of plume concentrations will be entered for each downwind distance gt 100 meters calculated 1 100 meters extrapolated Chi Q values will be input directly Building Wake Control fo Building Width meters Option only when stack height 0 fo Building Height meters Option only when stack height 0 lt Back Comment Next gt Figure 3 43 Screen 8 Diffusion Coefficient Control RSAC 7 3 30 October 2010 Using RSAC 7 2 Screen 10A Optional Coefficient of Standard Deviation This screen appears only if option 1 was chosen on screen 9 see Figure 3 44 Coefficient of Standard Deviation Line 5401 Figure 3 44 Screen 10A Optional Coefficient of Standard Deviation RSAC 7 3 31 October 2010 Using RSAC 7 2 Screen 10B Optional Plume Standard Deviation Control This screen appears only if option 2 was chosen on screen 9 see Figure 3 45 NOTE Weather class F Extremely Stable Fumigation is only available if stack height was equal to zero on screen 3 Plume meander is a factor that allows for additional spreading of the plume Also known as a spreading ratio it is a factor greater than 1 that adjusts the calculated Chi Q values to account for very low wind speed spreading Plume Standard Deviation Control Line 5410 Help Plume Rise Indicator Type of Standard
219. rological Conditions description of the facility and its location is selected here AL BIRMINGHAM str AL HUNTSVILLE str AL_MOBILE str Figure 3 81 Meteorological Conditions screen A joint frequency table is generated as shown in Figure 3 82 RSAC 7 3 63 October 2010 SUMMARY TABLE 5 1 04 0 01217 0 03829 0 01991 0 03847 0 11610 0 00000 0 00000 1 000 2 46 0 00488 0 02166 0 02998 0 06103 0 13765 0 00000 0 00000 WINDSPEED m s 4 47 0 00000 0 00972 0 04009 0 11962 0 06599 0 00000 0 00000 6 93 0 00000 0 00000 0 00937 0 17756 0 00000 0 00000 0 00000 9 61 0 00000 0 00000 0 00187 0 07013 0 00000 0 00000 0 00000 Using RSAC 7 2 13 91 0 00000 0 00000 0 00058 0 02500 0 00000 0 00000 0 00000 Figure 3 82 Generated joint frequency table From that data two points of interest are reported see Figure 3 83 RSAC 7 3 64 October 2010 Using RSAC 7 2 50TH PERCENTILE OCCURS IN STABLILTY CLASS C 2 46 m s WINDSPEED 95TH PERCENTILE TABLE WINDSPEED m s sc 1 04 2 46 4 47 6 93 5 61 13 91 A 0 01217 0 00488 0 00000 0 00000 0 00000 0 00000 0 03829 0 02166 0 00972 0 00000 0 00000 0 00000 0 01991 0 02998 0 04009 0 00937 0 00187 0 00058 0 03847 0 06103 0 11962 0 17756 0 07013 0 02500 0 06603 0 13765 0 06599 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 9 00000 0 00000
220. s allows doses from different exposure pathways and multiple RSAC 7 2 calculations within the same input run to be summarized added and reported in summary tables This option has strict operating guidelines see Section 4 1 Dose Summary Option Control Line 3000 12 4 5000 Series Meteorological Data Input This series allows the user to specify meteorological conditions at the time of release and to calculate diffusion dispersion and depletion factors This input series of RSAC 7 2 must normally be entered before any dose calculations are requested After establishing basic meteorological parameters such as stack height wind velocity and mixing layer depth the user specifies points of interest for dose calculations at downwind and or crosswind positions RSAC 7 2 models the release of radioactivity from containment structures using exponential functions see Appendix A Instantaneous and continuous releases are modeled using a single exponential function Complex release scenarios be modeled using a series of up to 10 exponential functions These functions calculate the radionuclide inventory decay while it is held up by the containment structure before it is released Atmospheric diffusion parameters can be input directly by the user or calculated by RSAC 7 RSAC 7 2 calculates plume standard deviations os developed for three different conditions Hilsmeier Gifford os Clawson et al 1989 were developed for desert ter
221. s and review the data input Inventory Decay Line 1003 x Help Inventory Decay Radionuclide inventory decay time o Second s lt Back Comment Next gt x 1 This completes data entry For the Fission Product Inventory Calculation Series Click the Save button to keep your work Figure 3 17 Input Completion Notification screen Screen 2B Optional Reactor Operation Shown only if Reactor Operation is selected on screen 1 see Figure 3 18 Criticality Reactor Operation Line 1003 Help Reactor shutdown time before this operation o Secondis Reactor power for operation o watts Reactor operating time at above reactor power o Secondis lt Back Comment Next gt Figure 3 18 Screen 2B Optional Reactor Operation RSAC 7 3 13 October 2010 Using RSAC 7 2 Screen 3A Release During Reactor Operation This screen appears after optional screen 2B Reactor Operation see Figure 3 19 If YES is clicked the Release During Fission Product screen will appear next Release During Reactor Operation Calculat x Help At this point you may enter information simulating fission product releases from reactor while in operation If this option is chosen A choice will be given as to whether the activity in or out of the reactor is to be retained Do you wish to use this option C Yes No Back Comment gt Figure 3 19 Screen 3A R
222. s considered a new software project and not a maintenance upgrade of RSAC 7 1 Therefore the existing software management plan SMP for Version 6 2 was left unchanged and a new SMP for Version 7 was developed The modifications that was made to RSAC 7 2 along with other added capabilities 15 described in more detail in the technical and functional requirements document The purpose was to create RSAC 7 2 with sufficient quality so that it could confidently be released on an international scale to NQA 1 2000 Quality Assurance Requirements for Nuclear Facility Applications Subpart 2 7 Quality Assurance Requirements for Computer Software for Nuclear Facility Applications In addition to the requirements of NQA 1 2000 NQA 1 2008 Quality Assurance Requirements for Nuclear Facility Applications Subpart 2 7 Quality Assurance Requirements for Computer Software for Nuclear Facility Applications was also used as a basis for establishing software requirements Where a difference existed between the documents the most conservative process or method was selected The SMP for version 7 applies to all point releases As in 7 0 x 7 2 x 7 4 x 7 6 x etc The released versions are controlled as even point releases During the testing phase the versions are controlled as odd point releases All releases of RSAC 7 are required to follow this SMP and the other implementing documents of this plan This chapter provides the software management
223. s per line is allowed Line numbers are not required 4 2 2 3 External Radionuclide File Control Line 2002 This optional line allows you to specify an external file for inputting radionuclide inventories This line may follow Line 2000 Data in the external file have the same format as that on the Radionuclide Entry Lines with one exception The first line in the external file is used to identify the data set and is printed on the RSAC 7 2 output file The program stops reading radionuclide inventories from an external file when it encounters either a blank line or the end ofthe file An Input End Line 2999 must immediately follow a 2002 line Variable Word Name Entry Description 1 2002 2 EXTFILE Enter the name of the external file containing the radionuclide inventory input The name entered must be a valid DOS filename with no extensions 4 2 2 4 Radionuclide Direct Input End Line 2999 Use this line to end the direct input of radionuclide inventory input Word Entry 1 2999 RSAC 7 4 7 October 2010 3000 Series 4 2 3 3000 Series Dose Summary Option Use this option to summarize add and report in summary tables doses from different exposure pathways and multiple RSAC 7 2 calculations 4 2 3 1 Dose Summary Option Control Line 3000 RSAC 7 2 automatically initiates the dose summary Following dose calculations for the pathways desired enter additional 3000 lines to request dose summaries Changes can be made
224. stable F 3 8 gt oa gt 2 1 Extremely stable G 2 1 gt Determined for a 15 min to 1 period for horizon tal diffusion RSAC 7 2 C 8 October 2010 Meteorological Diffusion Parameters Appendix D Lung Clearance Classes RSAC 7 2 D 1 October 2010 Lung Clearance Classes Appendix D ICRP 30 FGR 11 Lung Clearance Classes for Oxides or Hydroxides Z Element Z Element n L W HTO 41 Nb w 4 Y 42 Mo D Y 6 E CO ORG CO 43 Tc D W 9 E D w Y 44 Ru D w Y H Na D 45 Rh D w 12 D w 46 Pd D w Y l Al D w 47 he D 4 48 w Y 5 P D W 49 In D w le Vv 50 Sn D w 57 da D w Y 51 Sb D w 19 K D 52 Te D w 20 W 53 I D 21 Sc Y 55 Cs D 22 Ti D W Y 56 Ba D 3 W 57 La w 24 D W Y 58 Ce W Y 25 Mn D Ww 59 Pr W Y 26 Fe D W 60 Nd W Y 27 W Y 61 Pm W Y 28 Ni W V 62 Sm w s D W Y 63 w 30 Y 64 D w 31 D 65 w 32 D W 66 W 33 As W 67 Ho W 34 D MW 68 w 35 Br D w 69 Tm w 37 D 70 Yb w Y 38 Sr D Y 71 Lu w Y w Y 72 Hf w 40 Zr D w Y 73 Ta W Y RSAC 7 2 D 2 October 2010 Lung Clearance Classes Lung Clearance Classes ICRP 30 FGR 11 Lung Clearance Classes for Oxides or Hydroxides Z Element Z Element ud e 4 wW D 88 Ra w 75 D w 89 Ac D w Y 76 D W Y 90 Th W Y 77 Ir D w Y 91 Pa W Y 7480 Pt D D U T Y 79 D W Y 93 Np W 80 Hg D w V 94 Pu W Y 8 T D Be Am Ww 82 D
225. t K lt lt lt lt lt E IN W In Im Q IN Iu Ion IA I Iu 2 ICRP 72 Maximum Lung Clearance Classes 2 Element 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 72 Hf 73 Ta Lung Clearance Classes Allowable Clearance Classes F M 5 M S F M S F M S F M S F M S F M S E M S E M M F M S F M S E M S F M S F M S M F M S M 5 M 5 M 5 M M M M M M M M M 5 M 5 M M 5 October 2010 Z Element 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 TI 82 Pb 83 Bi 84 Po 85 At 87 Fr Allowable Clearance Classes o mom nm modnm o m Im lt lt Is lt ls lt lt lt IDA lt In 2 Ion ICRP 72 Maximum Dose Lung Clearance Classes Z Element 88 Ra 89 Ac 90 Th 91 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm References Allowable Clearance a Default lung clearance classes are underlined F Fast M Medium class and S Slow b Chemical species rather than clearance classes are indicated for hydrogen and carbon c V vapor RSAC 7 2 Classes F M S F M S F M S M 5 M S E M S E M S E M S M S M M M M October 2010
226. t Ag 115 73 471150 2 00E 01 2 m 4 67E 04 0 0001 0 1 1 0 Ag 115 gt Cd 115m 0001 481151 4 46E 01 4 1 46E 03 1 3 1 2 8 225 Cd 115m gt stable 491150 4 41E 14 5 0 1 1 1 0 1 In 115 gt stable 511150 3 21 E 01 2 m 0 1 1 1 0 1 Sb 115 gt stable 481150 5 35E 01 3 h 1 46E 02 1 0 1 0 0 Cd 115 gt In 115m 491151 4 49E 00 3 4 05E 05 1 1 1 1 0 In 115m gt stable 491161 5 43E 01 2 m 0 1 1 1 0 1 In 116m gt stable 521160 2 49E 00 3 h 0 1 1 1 0 1 Te 116 gt Sb 116 1 0 RSAC 7 2 B 19 October 2010 RSAC 7 2 Nuclear Data Library 511161 6 03E 01 2 m 0 1 1 1 0 1 Sb 116m gt stable 511160 1 58 01 2 m 0 1 1 1 0 1 Sb 116 gt stable 481171 3 36E 00 3 h 4 55E 03 1 2 1 0 0 Cd 117m gt Cd 117 500010 1 00 18 5 y 2 20E 03 1 0 1 0 2 pseudo gt pseudo 500020 1 00 24 5 3 00 04 1 4 1 1 2 pseudo gt Sb 117 481170 2 49E 00 3 h 2 56E 03 0 1 1 1 3 0 Cd 117 In 117m 1 In 117 9 491171 1 16E 02 2 m 1 00E 02 0 47 0 1 4 9 20 01 In 117m gt In 117 47 491170 4 32E 01 2 m 6 33E 10 1 0 1 5 9 20 01 In 117 gt Sn 117m 501171 1 36 01 4 d 1 1 1 6 0 Sn 117m gt stable 511170 2 80E 00 3 h 0 1 1 1 0 1 Sb 117 gt stable 440010 7 50E 16 5 y 3 90E 06 1 0 5 0 2 pseudo gt Ru 118 441180 6 16E 01 1 5 8 44E 07 1 0 5 1 0 3 Ru 118 gt Rh 118 1 0 451180 2 95 01 1 s 2 32 04 1 0 1 2 0 3 Rh 118 gt Pd 118 46
227. t TI 202 1 0 812020 1 23E 01 4 d 0 1 1 1 3 1 T1 202 gt stable 802030 4 66 01 4 d 0 1 1 1 1 1 Hg 203 gt stable 842030 3 67E 01 2 m 0 1 1 1 0 1 203 gt 1 203 1 0 RSAC 7 2 B 39 October 2010 RSAC 7 2 Nuclear Data Library 1 207 Po 207 914 Bi 203 852070 1 80 00 3 h 0 0 914 6 1 0 zi 086 832030 1 18 01 3 h 0 1 0 1 2 zi Bi 203 Pb 203 1 0 822030 5 19E 01 3 h 0 1 1 1 0 1 Pb 203 gt stable 812040 3 78 00 5 y 0 1 1 1 0 1 1 204 gt stable 832101 3 04 06 5 y 0 1 0 1 0 1 1 210 gt 1 206 1 0 812060 420E 00 2 m 0 1 1 1 1 3i 206 gt stable 832060 6 24 00 4 d 0 1 1 1 0 1 Bi 206 stable 842070 5 80E 00 3 h 0 1 0 1 7 zj Po 207 gt Bi 207 1 0 832080 3 68E 05 5 y 0 1 EI 1 0 0 3 1 208 gt stable 100252 0 2 54E 01 3 h 0 1 1 1 0 zi Fm 252 gt Cf 248 1 0 start 4N 982520 2 65 00 5 y 0 1 0 1 0 1 Cf 252 gt Cm 248 1 0 962480 3 48 05 5 y 0 1 0 1 2 1 Cm 248 gt 244 1 0 942440 8 11E 07 5 y 0 1 0 1 3 si Pu 244 gt U 240 1 0 922400 1 41E 01 3 h 0 1 1 1 4 1 U 240 gt Np 240 1 0 Np 240m gt Np 240 0011 932401 7 22E 00 2 m 0 0 9989 13 l 5 z Pu 240 9989 932400 6 19E 01 2 0 l 12 l 6 1 Np 240 gt Pu 240 1 0 912320 1 31E 00 4 d 0 1 5 1 0 1 PA 232 gt U 232 1 0 982440 1 94 01 2 m 0 l 0 l 0 1 Cf 244 gt Cm 240 1 0 962400 2
228. t until it reads a line that contains an asterisk in column 1 This allows the program to start the next problem if an error is found in the input If output 1s not received from an RSAC 7 2 run check to see if a line contains an asterisk in column 1 4 2 1 1000 Series Fission Product Inventory Calculation and Inventory Decay Use a Fission Product Calculation and Inventory Decay Control Line 1000 to initiate fission product inventory calculations or inventory decay calculations of a directly input radionuclide inventory Input the following lines to describe the reactor operating history and the fractionation of the fission product inventory This calculation generates a fission product inventory only It does not calculate the actinides available for release These should be directly input using a 2000 series and may be added to the calculated fission product inventory If subsequent decay is required an additional 1000 series should be used to calculate the decay of inventory The 6000 series does not calculate a decayed inventory for subsequent release It will only decay the inventory for printout purposes 4 2 1 1 Fission Product Inventory Calculation and Inventory Decay Control Line 1000 Word Variable Name Entry Description 1 1000 4 2 1 2 Inventory Control Initial Reactor Data Line 1001 The required Inventory Control Initial Reactor Data Line 1001 must immediately follow the Fission Product Inventory Calculation and Inventor
229. t values RSAC 7 5 1 October 2010 Example Runs 17 Criticality Accident ICRP 72 Inhalation and Ingestion DCFs This example demonstrates the complete evaluation of a 1 0 E18 fissions sec for 10 seconds pathways are evaluated using the ICRP 72 Adult values for ingestion and inhalation 18 Uranium Fire with Plume Lofting This example evaluates the release of uranium from a fire with plume lofting to show how important it 15 to identify where the plume reaches the ground 19 Plutonium Fire with Plume Lofting This example evaluates the release of plutonium from a fire with plume lofting to show how important it is to identify where the plume reaches the ground This example is similar to example 18 20 Release to a Room Inhalation Dose Only This example demonstrates how RSAC can calculate the inhalation dose from a release to a volume The examples are added to demonstrate the capabilities of RSAC 7 2 and validate the 127 executable commands within the software The examples are write only but can be saved as another name and edited The output of example 1 is documented here for information purposes only RSAC 7 5 2 October 2010 Example 1 Example Runs Direct Input and Decay of Radionuclides Radiological Safety Analysis Computer Program RSAC 7 1 0 preview Name INL Company Idaho National Laboratory Computer INL413668 Run Date 10 28 2010 0001 Run Time 09 58 24 File Example 07 Simulated Reactor Operation I
230. table 681650 1 04 01 3 h 0 1 1 1 0 1 Er 165 gt stable 661660 8 16E 01 3 h 0 1 0 1 0 1 Dy 166 gt Ho 166 1 0 671660 2 68E 01 3 h 0 1 1 1 1 1 Ho 166 gt stable 671661 1 20E 03 5 y 0 1 1 1 0 1 Ho 166m gt stable 701660 5 67E 01 3 h 0 1 0 1 0 1 Yb 166 gt 166 1 0 691660 7 70E 00 3 h 0 1 1 1 1 1 Tm 166 gt stable 671670 3 10 00 3 h 0 1 1 1 0 1 Ho 167 gt stable 701670 1 75E 01 2 m 0 1 0 1 0 1 Yb 167 gt Tm 167 1 0 691670 9 25E 00 4 d 0 1 1 1 1 1 Tm 167 gt stable 681690 9 39 00 4 0 1 1 1 0 1 Er 169 gt stable 711690 3 41E 01 3 h 0 1 0 1 0 1 Lu 169 gt Yb 169 1 0 701690 3 20E 01 4 d 0 1 1 1 1 1 Yb 169 gt stable 691700 1 29 02 4 0 1 1 1 0 1 170 gt stable 721700 1 60 01 3 h 0 1 0 1 0 1 Hf 170 gt Lu 170 1 0 711700 2 01E 00 4 d 0 1 1 1 1 1 Lu 170 gt stable 681710 7 52 00 3 h 0 I 0 I 0 1 171 gt Tm 171 1 0 691710 1 92 00 5 0 1 1 1 1 1 171 gt stable RSAC 7 2 B 34 October 2010 RSAC 7 2 Nuclear Data Library 711710 8 24E 00 4 d 0 1 1 1 0 1 Lu 171 gt stable 681720 4 93E 01 3 h 0 1 0 1 0 1 172 gt Tm 172 1 0 691720 6 36 01 3 h 0 1 1 1 1 1 Tm 172 gt stable 731720 3 67E 01 2 m 0 1 0 1 0 1 172 gt Hf 172 1 0 721720 1 87E 00 5 y 0 1 0 1 1 1 Hf 172 gt Lu 172 1 0 711720 6 70E 00 4 d 0 1 1 1 2 1 Lu 172 gt stable
231. ted dose calculations to support safety analysis reports and emergency response conditions INEEL 2001 2 RSAC V amp V files are contained in seven volumes in excess of 10 000 pages The files are maintained by the Idaho National Laboratory INL and are available for review The INL maintains a Software Management Plan and a Software Quality Assurance Plan per DOE recommendations 2 4 3 Restrictions or Limitations The RSAC is based on the Gaussian model of dispersion As such RSAC is best suited for specific types of conditions which should be considered before applying RSAC The conditions are e Plume Duration RSAC is best suited for short duration plumes ranging from approximately several minutes to several days It should be understood that plume meander has a significant effect on releases longer than an hour Meteorological conditions change and will cause plume variations from that approximated using the Gaussian model Source Distance RSAC does not model dispersion close to the source less than 100 meters from the source especially where the influence of structures or other obstacles 15 still significant Although the selection of distances inside of 100 meters can be performed the results should be understood as only a conservative approximation Dispersion influenced by several collocated facilities within several hundred meters of each other should be modeled with care Similarly RSAC should be applied with cautio
232. ter Program Version 4 03 Westinghouse Idaho Nuclear Company Inc Idaho National Engineering Laboratory Idaho Falls Idaho 41 Wenzel D 1994 The Radiological Safety Analysis Computer Program RSAC 5 User s Manual WINCO 1123 Revision 1 Idaho national Engineering and Environmental Laboratory Idaho Falls Idaho 42 Yanskey G R E H Markee Jr A P Richter 1966 Climatography of the National Reactor Testing Station IDO 12045 Idaho National Engineering Laboratory Idaho Falls Idaho RSAC 7 6 3 October 2010 INTENTIONALLY BLANK RSAC 7 6 4 October 2010 atnematical Models Appendix A Mathematical Models RSAC 7 2 1 October 2010 atnematical IVioqelrs Appendix A Mathematical Models A 1 FISSION PRODUCT INVENTORY The calculation of a fission product inventory for a given operating history is divided into two parts fission product buildup and radionuclide decay A 1 1 Fission Product Buildup The rate of buildup or fission product generation of the various radionuclides of a decay chain is described by a set of simultaneous differential equations of the first order RiEs mQ A 1 8 H3 Q3 ien 8 Mi Qi A 3 where Qi the number of atoms for the i radio nuclide of the decay chain t operating time s the source rate at which atoms are being produced by fission for the i radionuclide atoms s Aitog 0 the decay constant for the i radi
233. therwise must not be 0 04167 5 THD Harvest duration time period 0 lt THD lt 60 following an acute release d If zero defaults to 7 days When the sum of ATIME and THD exceeds ETV see 7052 line the program automatically decreases the value input for THD to give a sum of ETV days for produce calculations The program also automatically calculates a value for THD for forage calculations so that the sum of ATIME and THD do not exceed the value of ETM see 7052 line 4 2 6 6 Optional Clearance Class by Element Lines 7031 These lines are present only if ICCI word 3 on the 7003 line is equal to 2 Make entries in pairs of two the element s atomic number followed by the clearance class code Refer to Appendix D for valid clearance classes RSAC 7 4 27 October 2010 Example Runs Variable Word Name Entry Description 1 Integer 703 1 2 etc 2 NN Integer Atomic number for element 3 ICI NN Integer ICRP 72 68 ICRP 30 Class D 2 Type M TypeM Class W 3 Type S Type S Class Y Enter as many pairs of entries and up to eight pairs per line 4 2 6 7 Optional Ingestion Dose Constants Lines 7051 These lines are present only if ITYPE word 3 on the 7004 line 1s equal to 2 Ingestion Constants Line 1 7051 Variable Word Name Description 1 7051 2 UFSV Stored vegetable usage factor kg yr wet weight 3 UFFV Fresh vegetable usage factor kg y
234. though the total activity entered may represent a release over an extended period of time When the total activity to be released to the atmosphere is entered directly into RSAC 7 2 the user should set K1 1 2 0 and the time over which the activity is released to the atmosphere to 1 second Proper selection of the leakage constants and K2 can be evaluated by integrating each of the leakage terms over the period of release The sum of the integrated terms should equal the total release fraction before correction for radioactive decay Additional information on the use of the RSAC 7 2 leakage function is presented in Section 4 1 Leakage Decay Constants Lines 5201 October 2010 atnematical Moaels A 2 5 Plume Rise Plume rise in RSAC 7 2 is calculated for either jet or buoyant plumes using the methodology developed by Briggs 1969 For jet plumes in neutral windy or lapse conditions the jet centerline plume rise 15 given by 29 where Ah plume rise above the top of the stack m D internal stack diameter m Wo efflux speed of gases from stack m s u average windspeed at the stack level m s x downwind distance m Equation A 29 is used up to the point that 2 3 1 3 Ah 144 Se m D A 30 as long as 0 2 4 When stable meteorological conditions exist plume rise is calculated using F 1 3 Ah 1 5 g Uo u 31 where RSAC 7 2 A 13 October
235. ths Summary of Dose by Pathway and Radionuclide C 1 Year C Summary of Dose by Organ C 5 Years Summary of Dose by Organ and by Radionuclide 10 Years Contribution to Effective Dose Equivalent 15 Years Contribution to Effective Dose Equivalent by Radionuclide Adult C Contribution to Effective Dose Equivalent by Radionuclide and sorted by Dose C Re initiate the Dose Summary Galea d ganL m C Acute inhalation dose C ICRP 30 model lt Back Comment Next Figure 3 34 Screen 2 Dose Summary Options RSAC 7 3 22 October 2010 Using RSAC 7 2 One or all of the options may be selected and may be selected for a specific age group Summary of Dose by Pathway Summarizes the CEDE for each pathway and totals the dose Summary of Dose by Pathway and Radionuclide Summarizes the CEDE for each radionuclide and each pathway It does not summarize for the plume gamma pathway Summary of Dose by Organ Requires the selection of organs on optional screen 3 see Figure 3 35 Click the organ in the list to select it and click again to unselect the organ An X will appear in the selected column to indicate the organ is selected If the Clear Selected button is clicked then all organs are unselected Organ Selection Help Organs Organ 1 Selged Adrenals Bladder Vall Bone Surface Brain Breast Colon Esophagus Extrathoracic Ainvays Kidneys Liver Lower Large
236. tion Control element summation or printout The radionuclide inventory is summed for each element selected the next screen lt Back Comment Next gt Figure 3 56 Screen 7 Optional Summation Control RSAC 7 3 40 October 2010 Using RSAC 7 2 Screen 8 Optional Element Summation This screen appears only if The radionuclide inventory is summed of each element selected on the next screen is chosen on screen 7 On this screen see Figure 3 57 select the element using one of the following methods Scroll through the list and click on the desired element type the symbol to quickly select the desired element To unselect an element click it in the list a second time To clear all selected click the Clear Selected button Element Summation Line 6201 xi Help Use the control key to make more than 1 selection Element Selection Symbol Atomic ElementName Selected 4 AC actinium Ag 04 silver Al 013 aluminum 095 americium 018 argon AS 033 arsenic At 085 astatine Au 073 gold Ba 056 barium Be 004 beryllium Bi 083 bismuth Bk 097 berkelium Br 035 bromine C 006 carbon Ca 020 calcium Clear Selected lt Comment Next gt Figure 3 57 Screen 8 Optional Element Summation RSAC 7 3 41 October 2010 Using RSAC 7 2 3 2 6 7000 Series Internal External Dose Calculation Screen 2 Dose Control Selection After t
237. tions Default to 0 RSAC 7 4 25 October 2010 Example Runs 4 2 6 4 Optional Inhalation Dose Calculation Control Line 7003 This line is present only if IMOD word 2 on the 7000 line is 1 It is important to understand that when the default recommended or maximum parameter 1s selected it is for the element and all associated nuclides For example the maximum value for ICRP 72 adult with respect to plutonium is defined as Fast This is true for the majority of the plutonium radionuclides However if Pu 234 Pu 235 and a few others are being evaluated it is not the maximum clearance type For those nuclides Slow is the maximum type Therefore it is very important that you understand the nuclide and the appropriate clearance class type for your specific application A option has been added to output all of the clearance class values by changing the third word values to a negative number See Appendix D for the default values for all options Variable Word Name Entry Description 1 7003 User supplied inhalation parameters 2 AMAD Activity median aerodynamic diameter um If zero defaults to 1 AMAD must be 20 1 um 3 ICCI Clearance class indicator 1 Default to program generated classes for ICRP 72 recommended values and oxides and hydroxides where no recommendations exist 2 User input of classes on 703X lines Unchanged classes default to those for selection 1 3 Default to program generated classes selected t
238. ty on forage ES Retention factor for activity on vegetables Retention factor for iodines on forage Removal rate constant for crops 1 Vegetable exposure time to plume for chronic release days Forage exposure time to plume for chronic release days HTO removal half time days 111117 lt Comment Next gt Figure 3 69 Screen 5B Optional Retention Constants Tab RSAC 7 3 53 October 2010 Using RSAC 7 2 8 Ingestion Dose Constants Line 7051 x Help Usage Constants Retention Constants Field Factors Forage Constants Acute Modifiers Effective surface density for soil kg m 2 Stored vegetable holdup time after harvest days Fresh vegetable holdup time after harvest days Animals daily forage feed kg day dry weight Feed milk receptor transfer time days Slaughter to consumption time days lt Back Comment Next gt Figure 3 70 Screen 5B Optional Field Factors Tab RSAC 7 3 54 October 2010 Using RSAC 7 2 5 Ingestion Dose Constants Line 7051 Help Field Factors Forage Constants Acute Modifiers Fraction of year that animals graze Fraction of feed that is pasture when animal grazes on pasture Stored feed holdup time days Vegetable vegetation yield kg m 2 wet weight Forage vegetation yield kg m 2 dry weight Absolute humidity g m 3 Comment lt Back Comment Next gt Figure 3 71 Screen
239. u a nnns 3 27 Figure 3 41 Screen 6 Leakage Decay Constants sss en enne 3 28 Figure 3 42 Screen 7 Crosswind Distance u un aqa aaa abuela nennen ener nennen 3 29 Figure 3 43 Screen 8 Diffusion Coefficient Control 3 30 Figure 3 44 Screen 10A Optional Coefficient of Standard Deviation sss 3 3 Figure 3 45 Screen 10B Optional Plume Standard Deviation Control 3 32 Figure 3 46 Screen 10C Optional Direct Chi Q Input sese 3 33 Figure 3 47 Screen 11A Optional Jet Plume Rise Parameters essere 3 33 Figure 3 48 Screen 11B Optional Buoyant Plume Rise a 3 34 Figure 3 49 Reports Tab eee ote cep eee etg e t aee eek bunt 3 34 Figure 3 50 Screen 2 Radionuclide Decay Coptrol sse eere 3 35 Figure 3 51 Screen 3 Optional Exponential Leakage Decay sese 3 36 Figure 3 52 Leakage Decay Constants Prompt SCreen nennen 3 36 Figure 3 53 Screen 4 Optional Leakage Decay Constants 00 00000000000000000000000553 3 37 Figure 3 54 Screen 5 Optional Radionuclide Selection essere 3 38 vil Figure 3 55 Screen 6 Decay Times u neo beet
240. ult dietary ingestion rates for adults U U and Ub used in RSAC 7 2 are presented in Table A 5 Table A 5 Default annual dietary ingestion rates for adults Parameter Value Units Symbol Leafy vegetables 64 kg yr U Meat 110 kg yr U Milk 310 L yr Produce 520 kg yr U RSAC 7 2 A 19 October 2010 Mathematical Models The concentration of radionuclide i in and on vegetation is a function of the rate of deposition upon the plant foliage and the rate of uptake from the soil The equation used to estimate the concentration in and on vegetation from all radioiodines and particulate radionuclides except tritium and carbon 14 is 4 ite Ait C d rE 1 E 1 J et A 38 Y PA where C concentration of radionuclide i in and on vegetation pCi kg di deposition rate of radionuclide i pCi m h r fraction of deposited activity retained on foliage fraction of deposited radioactivity translocated from plant surface to edible portion of crop Ag effective removal rate constant for radionuclide i from foliage surfaces 11 Agi Aw decay constant for radionuclide i s rate constant for removal of activity on plant or leaf surfaces by weathering h te time period that crops are exposed to contamination during the growing season h Y agricultural productivity yield kg m Biy concentration factor for root uptake of radionuclide i from soil to ed
241. umber entry is referred to as a word The first word of every line is referred to as the line number which is used to check input sequences As shown in the third word of the last variation above 492 4 when a real number does not contain a decimal point the decimal point is assumed to appear before the first digit However you are encouraged to place a decimal point in real numbers The following RSAC 7 2 input descriptions assume that all words are real numbers unless otherwise noted Changes from RSAC 6 to RSAC 7 2 are noted in red The input descriptions in this section include word program name entry and description information The word column presents the location of the entry The program name column identifies the name given to the variable in the source program and is not input on a line The entry and description columns provide the entry numbers or type of entry and their corresponding descriptions To insert a comment line type a sign in the first column There is no limit to the number of comment lines you can insert Comment lines are printed in the RSAC 7 2 ASCII input file and appear in the list of input printed at the beginning of each output file The example runs in Section 5 will help you learn how to prepare ASCII input for the RSAC 7 2 program RSAC 7 4 October 2010 2000 Series 4 2 Calculation Title Line ColumnEntry 2 72 Page heading alphanumeric RSAC 7 2 ignores all lines of inpu
242. und level in what is known as the mixing depth A stable layer exists above the mixing depth that restricts vertical diffusion The depth of the mixed layer is a function of the heat energy exchange between the air and the ground it is influenced by cloud cover time of day and season Seasonal and annual mixing depths have been estimated for the Idaho National Laboratory INL Clawson et al 1989 and are presented in Table A 1 RSAC 7 2 treats the ground and the height of the mixing depth as plume reflectors When o becomes large compared to the mixing depth the plume becomes uniformly distributed between the Table A 1 Estimated seasonal and annual mixing depths m for mornings and afternoons at the Idaho National Laboratory INL Season Morning Afternoon Spring 480 2330 Summer 260 2900 Autumn 330 1550 Winter 400 730 ANNUAL 370 2090 RSAC 7 2 5 October 2010 Mathematical Models ground and the height of the mixing depth Atmospheric diffusion 15 then calculated using Equation A 12 Turner 1970 7 Yanskey et al 196622 1 12 0 2 P EN 59 y 0 HET Hi exp H height of the mixing depth m where An option is provided for ground level releases to adjust the plume standard deviations to correct for an initial mixing of the effluent plume within a building wake NUREG CR 6331 An effective and can be used to correct for building turbulence Ramsdell 1995 using the following equations A 13
243. ventory decay requested by the last Fission Product Calculation and Inventory Decay Line 1000 Word Entry 1 1999 4 2 2 2000 Series Direct Radionuclide Input Use the Radionuclide Direct Input Control Line 2000 to initiate directly entering the radionuclide inventory in curies instead of using a fission product inventory All radionuclides are identified by the radionuclide identification number NUCL or by entering the element symbol followed by the atomic number 4 2 2 1 Radionuclide Direct Input Control Line 2000 This control line has data word that identifies whether an existing radionuclide inventory should be deleted changed or appended If the option to change or append the file is chosen the previous radionuclide inventory can be from another directly calculated 1000 series input or another external file It is important to understand that if an inventory decay is required it must be done in a 1000 series decay 1003 line A 6000 series decay calculation is for display and print purposes only and will not calculate the active inventory decay Word Entry Description 1 2000 0 Radionuclide inventory input option 1s chosen Any previous radionuclide inventory is deleted Radionuclide entry lines or an external file 2002 may be identified If direct input of radionuclides and their respective activities is desired then the requirements of Radionuclide Entry Lines must be followed If an external file is re
244. ware that can assist with installation if necessary Once the program has been installed and opened a screen will open that requires a response see Figure 2 1 This computer software was prepared by Battelle Energy Alliance LLC hereinafter the Contractor under Contract No DE ACQ7 051D14517 with the United States U S Department of Energy DOE NEITHER THE UNITED STATES GOVERNMENT NOR DOE NOR THE CONTRACTOR MAKE ANY WARRANTY EXPRESSED OR IMPLIED OR ASSUMES LIABILITY OR RESPONSIBILITY FOR THE USE ACCURACY COMPLETENESS OR USEFULNESS OR ANY INFORMATION APPARATUS PRODUCT OR PROCESS DISOCLOSED OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS EXPORT RESTRICTIONS The provider of this computer software and its employees and its agents are subject to U S export control laws that prohibit or restrict 1 transactions with certain parties and ii the type and level of technologies and services that may be exported You agree to comply fully with all laws and regulations of the United States and other countries Export Laws to assure that neither this computer software nor any direct products thereof are 1 exported directly or indirectly in violation of Export Laws or 2 are used for any purpose prolubited by Export Laws including without limitation nuclear chemical or biological weapons proliferation None of this computer software or underlying information or technology may be downloaded or otherwise
245. xternal exposure from a release to a room and internal exposure from resuspension are also available 1 2 7 9000 Series Cloud Gamma Dose Calculation RSAC 7 2 calculates cloud gamma doses in addition to the air immersion model provided in the 7000 Series input using either a finite plume model or a semi infinite cloud gamma model The finite plume model is accurate for any plume size location or release point However compared to the air immersion or semi infinite models it requires longer computer time to perform calculations When the plume has diffused to ground level and is large compared to the mean free path of the gamma rays both the semi infinite and the air immersion models give accurate results However as noted in the 7000 Series discussion in this section significant errors can result when the proper conditions for these simplified models do not exist Whenever in doubt the user should use the finite plume cloud gamma model By comparing the results of the finite plume model with the semi infinite plume model users can establish when the simplified models can be used RSAC 7 1 6 October 2010 Installing RSAC 7 2 RSAC 7 2 Software Management The purpose of RSAC 7 software management is to outline and explain the management of the RSAC 7 2 software project RSAC 7 2 is the newest version ofthe RSAC legacy program It was developed by modifying RSAC 7 1 however as a result of major modifications to the program RSAC 7 2 1
246. y Decay Control Line 1000 Use the control word on this line to indicate whether you are a calculating a new fission product inventory actinides are not calculated or b modifying a previously calculated radionuclide inventory If you want to calculate a new fission product inventory enter the reactor power and operating time on this line The next line may be a Refueling Line 1002 Decay Cycle Line 1003 or Fractionation Line 1004 to modify the release calculation If you are modifying a directly input radionuclide inventory the remaining words on this line are ignored but must be present and the next line must be a Refueling Line 1002 Decay Cycle Line 1003 or Fractionation Line 1004 Word Variable Name Entry Description 1 1001 2 Integer Control word 0 Calculations start with no previous radionuclide inventory 1 Previous radionuclide inventory is retained and the next line must be a Refueling Line 1002 Decay Cycle Line 1003 or Fractionation Line 1004 The values for the remaining words on this line are ignored however values for each of the following words must be present RSAC 7 4 2 October 2010 2000 Series Word Variable Name Entry Description 3 POWER Reactor power W or 0 0 if word 2 1 If megawatt days MWd of an operating cycle are known use the following conversion to generate the inputs for words 3 and 4 If operating power and MWd are known 8 64 E10 W s M Wd then divide
247. y of Dose by Pathway Dose Summary Option Figure 3 4 File summary display The file information see Figure 3 5 located at the bottom of the screen shows the full path of the currently open file and the date and time it was last modified C Program Files INL Risac Examples E xample 07 Simulated Reactor Operation ICRP 72 Public Inhalation Dose rsac Figure 3 5 File information display 3 1 2 Other Tools and Features Other tools and features that are accessible under the drop down menu at the top of the window are e Create Text File Creates a text file from the currently open file e Edit Text and ASCII Files Opens the selected file in Notepad for editing e Browse File Browse the currently open file in text format e Run Batch Allows running a batch of mixed file types with RSAC e Run History Views history database of all files run with RSAC e View Existing Opens existing run output files for viewing RSAC 7 3 3 October 2010 Using RSAC 7 2 e Options Controls user settings for WinRp e Website Opens the RSAC website in Internet Explorer RSAC Manual Opens the RSAC pdf manual Adobe Acrobat Reader is required 3 1 3 Options Certain features of WinRp can be controlled in the options dialog see Figure 3 6 To open the Options Dialog click the Tools menu then click Options Figure 3 6 Options Dialog display RSAC 7 3 4 October 2010 Using RSAC 7 2 3 1 4 Series Main Window The series main window S
248. y to add additional Leakage Decay Sets lt Back Comment Next gt Figure 3 53 Screen 4 Optional Leakage Decay Constants RSAC 7 3 37 October 2010 Using RSAC 7 2 Screen 5 Optional Radionuclide Selection This screen appears only if Only radionuclides that are selected on an upcoming screen will be decayed was chosen on screen 2 On this screen see Figure 3 54 select the radionuclide using one of the following methods Scroll through the list and click on the desired radionuclide type the symbol to quickly select the desired radionuclide To unselect a radionuclide click it in the list a second time To clear all selected click the Clear Selected button Element Summation Line 6201 X Help Use the control key to make more than 1 selection Element Selection Symbol Atomic ElementName Selected 089 047 Al 013 Am 095 Ar 018 As 033 At 085 Au 079 Ba 056 Be 004 Bi 083 Bk 097 Br 035 006 020 Clear Selected actinium silver aluminum americium argon arsenic astatine gold barium beryllium bismuth berkelium bromine carbon calcium lt Back Comment Mext gt Figure 3 54 Screen 5 Optional Radionuclide Selection RSAC 7 3 38 October 2010 Using RSAC 7 2 Screen 6 Decay Times The screen asks if you want to enter decay times directly see Figure 3 55 If Yes is selected the decay times input section will be enabled
249. yields Include an option to read ingestion transfer parameters from an external file Refine the model for ingestion dose calculations from an acute release After major modifications RSAC 6 was released in 2001 to Add radionuclides to the program library Use internal dose conversion factors from Federal Guidance Report FGR 11 and external dose rate conversion factors from FGR 12 Calculate doses at distances of less than 100 meters Correct minor errors identified in the program Printout radionuclides in a logical order Add default lung clearance classes to provide the maximum dose based on each element Allow entry of radionuclide input in either upper or lower case characters Eliminate a discontinuity in the leakage function Add an option to allow the user to enter a respirable fraction for inhalation dose calculations Add an option to allow the user to enter an occupancy factor for ground surface dose calculations Incorporate editorial changes in program output Enhance the method to estimate the building wake effect Evaluate the instantaneous release to a room Evaluate the resuspension of particulate activity Enhance the method for evaluation of dry deposition Perform calculation of an effective and o when Q is directly input RSAC 7 2 is the current release of of RSAC 7 and was released in 2010 This revision of RSAC Added internal dose conversion factors from ICRP 68 and 72 Added acute dose conversion factors for a

Download Pdf Manuals

image

Related Search

Radiological Safety Analysis Computer (RSAC) Program Version 7.2 user manual

Related Contents

                  ANALOG DEVICES AD8206 English products handbook Rev A  

Copyright © All rights reserved.
DMCA: DMCA_mwitty#outlook.com.