Home

OMRON OMNUC G SERIES user manual

image

Contents

1. t 18 t 18 e Cables for Two Axes 39 L Servo Drive Motion Control Unit R88D GL CS1W MC221 421 V1 a 3 To EN E Servo Drive t 18 R88D GL 3 89 3 4 Cable and Connector Specifications Wiring e Cables for One Axis Motion Control Unit Servo Drive AE White Black 1 oes XALMRS s Yellow Black QRS 8 Gr ted C m X GND mE ee 2 ZCOM White Red 1 ULL oe Yellow Red 1 i 18 Yellow Black 1 ENT IE vsus plug M 10150 3000PE l AGND Sumitomo 3M Co NN Orange Black 1 Shell FG Connector case T 10350 52A0 008 FDC GND 20 ALMCOM Sumitomo 3M Cable AWG26 x 5P AWG26 x 6C Connector plug 10136 3000PE Sumitomo 3M Connector case 10336 52A0 008 Sumitomo 3M e The Motion Control Unit signals are the DRVX and DRVY connector signals For the DRVZ and DRVU connectors X and Y are indicated as Z and U respectively e Pins marked with asterisks are for absolute encoders e Connect 24 VDC to the two lines red and black extending from the Motion Control Unit connector red 24 V black 3 90 Specifications Specifications 3 4 Cable and Connector Specifications 3 91 e Cables for Two Axes Motion Control Unit Servo Drive Em a EE SEEENEE Ld KAM Fa PiWBlak A XSOUT 9_ i cA 1 WniteiB
2. sees 3 6 Main Circuit Connector Specifications CNA 3 6 4 21 Main Circuit Terminal Block Specifications er TER 3 7 3 8 4 22 4 23 manual TUNN Gesa 7 21 Momentary Hold Time Pn6D 5 91 Monitor MOOG DE 6 8 Motion Control Unit Cables 3 89 4 16 Mounting Brackets L brackets for rack mounting 2 24 mounting hole dimensions sessessss 2 25 N No 1 Internally Set Speed Pn53 5 81 No 1 Torque Limit Pn5E sssssse 5 84 No 2 Internally Set Speed Pn54 5 81 No 2 Torque Limit Pn5F eeeussssse 5 84 No 3 Internally Set Speed Pn55 5 81 No 4 Internally Set Speed Pn56 5 81 No 5 Internally Set Speed Pn74 5 81 No 6 Internally Set Speed Pn75 5 81 No 7 Internally Set Speed Pn76 5 81 No 8 Internally Set Speed Pn77 5 81 no fuse Dreakers eec einen Ie enean x oe puer ceua 4 32 noise filters ie ioci c xen 4 35 4 36 4 37 4 43 noise filters for brake power supply 4 36 noise filters for power supply input 4 35 noise filters for Servomotor output 4 43 N
3. 1 This is the allowable rated output torque for the decelerator only Do not exceed this value Note 1 The Decelerator inertia is the Servomotor shaft conversion value Note 2 The protective structure for Servomotors with Decelerators satisfies IP44 Note 3 The allowable radial load is the value at the LR 2 position Note 4 The standard models have a straight shaft Models with a key and tap are indicated with J at the end of the model number the suffix in the box 3 52 Specifications Specifications 3 3 Decelerator Specifications Decelerators for 3 000 r min Flat Servomotors Maxi Mist Decelera ta tor Weight Model D inertia rotation speed wee www R88G 3 44 7 1 5 HPG11B05100PB 1 28 3 36 5 00 x 10 0 34 R88G 7 06 6 1 11 4HPG14A11100PBO 273 75 454 6 89 6 00 x 10 1119 1 04 100 R88G 14 5 6 W 1 21 HPG14A21100PBO 143 238 14 2 5 00 x 10 1358 1 04 R88G 18 6 5 1 33 POZoAa1oopen 9 6 91 151 18 1 4 50 x 10 3226 2 9 R88G 5 1 45 PaZoMs1ooPen S7 4 50 x 10 1006 3541 2 9 D Oo on on NN Bo in Eo pee cod gm soe ror forcie a om a 1 11 ieee ne 273 454 13 4 3 1 DI 81 151 47 9 916 3 1 HPG20A45200PB T 0 ae E arene n 2 econztaonpec ME E n e eel 2 S urea forte S SS Note 1 The values inside parentheses are for 100 V Servomotors Note 2 The Decelerator
4. 4 kW 5 kW Note 1 The standard models have a straight shaft Note 2 Models with a key and tap are indicated with J at the end of the model number the suffix shown in the box Example R88G HPG32A051K0BJ 2 51 Dimensions mm 2 2 External and Mounting Hole Dimensions es CHEN ES P ER d Keydmensons dimensions e e s u M t 1 5 R88G HPG32A051KOBL 13 40 82 11 M6x12 M6 70 12 8 5 0 M10 20 1 11 R88G HPG32A111KOBL 13 40 82 11 Mex12 M6 70 12 8 5 0 M10 20 1 kW 1 21 R88G HPG32A21 1KOBL 13 40 82 11 M6x12 M6 70 12 8 5 0 M10 20 1 33 R88G HPG32A331KOBL 13 40 82 11 M6x12 M6 70 12 8 5 0 M10 20 1 45 R88G HPG50A451KOBL 16 50 82 14 Mex10 M6 70 14 9 5 5 M10 20 1 5 R88G HPG32A052KO0BL 13 40 82 11 M8x10 M6 70 12 8 5 0 M10 20 1 11 R88G HPG32A112KOBL 13 40 82 11 M8x10 M6 70 12 8 5 0 M10 20 1 5 kW 1 21 R88G HPG32A211K5B 13 40 82 11 M8x10 M6 70 12 8 5 0 M10 20 1 33 R88G HPG50A332K0BL 16 50 82 14 M8x10 M6 70 14 9 5 5 M10 20 1 45 R88G HPG50A451K5BL 16 50 82 14 M8x10 M6 70 14 9 5 5 M10 20 1 5 R88G HPG32A052K0B 7 13 40 82 11 M8x10 M6 70 12 8 5 0 M10 20 S 1 11 R88G HPG32A112KOBL 13 40 82 11 M8x1
5. 3 12 2 000 r min Servomotors eee 2 3 3 41 24 V Open collector Input for Command Pulse FZAV OW ac 3 12 3 000 r min Flat Servomotors 2 3 3 39 3 000 r min Servomotors sees 2 2 3 33 90 degree Phase Difference Pulse Input Phase A EIN cueste oec ERE pde Oo eda CES Deae 3 12 90 degree Phase Difference Pulse Input Phase B EFB suitiaiie red edsceles eet beso eie eee ae 3 12 A Absolute Encoder Battery Cable 2 20 3 63 Absolute Encoder Reset Mode 6 23 absolute encoder setup eese 6 5 absolute encoders sorsra TE 3 46 adaptive fiter onsena eara AA rE E 7 11 Adaptive Filter Selection Pn23 5 63 Adaptive Filter Table Number Display Pn2F 5 66 Alarm Output ALM eeeeseeeeeeees 3 15 3 29 Alarm Reset Input RESET 3 13 3 25 Alarm Reset MOde ccccsscccsseeceeeeeseeeeeseeeseeeeees 6 21 aarm ta DE a NH 8 4 allowable current eese 4 25 Analog Input Ground AGND esses 3 12 applicable standards seeesessssss 1 10 Automatic Offset Adjustment Mode 6 22 Autotuning Operation Setting Pn25 5 63 autotuning teDIe c oo essere o coe EE Anat
6. eeeeeeeeeeee 6 7 Changing the Mod nw 5 idis uen e e SES 6 7 MOnNKOrMOdE n test MU MI M A MILI 6 8 Parameter Setting Mode cccccccsseceseeeceeceeeeeeseeeeeeeeaees 6 17 Parameter Write Mode rroi an a a 6 19 Normal Mode Autotuning se e e eaaa 6 20 Auxilia Function Mode eer a E E E TERM 6 21 Copy Mode cO EDEN EEUU ALS 6 25 0 5 Priel Operation ceto UM 6 28 Preparation for Trial Operation eeeesseeessse 6 28 Trial Operation in Position Control Mode 6 28 Trial Operation in Speed Control Mode 6 29 Trial Operation in Torque Control Mode 6 29 6 1 Operational Procedure 6 1 Operational Procedure After mounting wiring and connecting a power supply check the operation of the Servomotor and Servo Drive Then make the function settings as required according to the use of the Servomotor and Servo Drive If the parameters are set incorrectly there is a risk of an unpredictable Servomotor operation Set the parameters according to the instructions in this manual Install the Servomotor and Servo Drive according to the installation conditions Do not connect the Servomotor to the mechanical system before checking the no load operation 4 1 Installation Conditions Mounting and installation Connect the Servomotor and Servo Drive to the power supply and Wiring and _ peripheral devices conn
7. 4 3 4 1 Installation Conditions e When connecting to a V belt or timing belt consult the manufacturer for belt selection and tension A radial load twice the belt tension will be placed on the motor shaft Do not allow a radial load exceeding specifications to be placed on the motor shaft If an excessive radial load is applied the motor shaft and bearings may be damaged e Set up a movable pulley between the motor shaft and the load shaft so that the belt tension can be adjusted Tension adjustment Make adjustable CS Tension B Water and Drip Resistance e The protective structure for the Servomotors is as follows IP65 except for through shaft parts and cable outlets E Countermeasures against Oil When using the Servo Motor in an environment in which the shaft through hole is exposed to oil spray use a Servomotor with an oil seal The operating conditions for a Servomotor with an oil seal are as follows Keep the oil level below the lip of the oil seal Set up good lubricating conditions so that any oil spray falls on the oil seal f the Servomotor is used with the shaft pointing upwards be careful to not allow oil to accumulate at the lip of the oil seal B Radiator Plate Installation Conditions When the Servomotor is installed in a small space the Servomotor temperature may rise unless sufficient surface area is provided to allow heat dissipation from the Servomotor mounting surface
8. 4 37 Impedance Q Impedance Characteristics 3G3AX ZCL1 Impedance C Frequency kHz ESD R 47B 10000 1000 100 1 10 100 1000 Frequency MHz 4 3 Wiring Conforming to EMC Directives 3G3AX ZCL2 1000 Impedance Q o ZCAT 3035 1330 1000 100 1000 10000 Frequency kHz Impedance Q Frequency MHz 4 38 System Design System Design 4 3 Wiring Conforming to EMC Directives E Surge Suppressors e Install surge suppressors for loads that have induction coils such as relays solenoids brakes clutches etc e The following table shows the types of surge Suppressors and recommended products Type Diode Thyristor or varistor Capacitor resistor Features Diodes are used for relatively small loads when the reset time is not an issue such as relays At power shutoff the surge voltage is the lowest but the rest time takes longer Used for 24 48 VDC systems Thyristors and varistors are used for loads when induction coils are large as in elec tromagnetic brakes solenoids etc and when reset time is an issue The surge voltage at power shutoff is approximate
9. SW power Li supply Regene Over Main circuit rative current control control detection Internal control power MPU amp ASIC supply Position speed and torque processor PWM control communications interface RS 232 RS 485 interface interface CN3A CN3B connector connector Control I O interface CN1 control I O connector CN2 encoder signal connector 1 5 1 4 System Block Diagrams R88D GT04L GT08H GT10H GT15H Ltt ues i nn gs ate it TII SW power a m g Supp Relay Regene Over ee Main circuit dius rative current ate arive detection control control detection Internal control power MPU amp ASIC supply Position speed and torque processor PWM control communications interface RS 232 RS 485 interface interface CN3A CN3B connector connector Wi B Control I O interface except for the BE ll CN1 control I O connector CN2 encoder signal connector Features and System Configuration Features and System Configuration 1 4 System Block Diagrams R88D GT20H Terminals M E Eu Voltage E Gate drive detection Display setting circuits Terminals SW power 5 supply egene Main circuit Relay rative control drive control Internal control power MPU amp ASIC supply Position speed and torque processor PWM control communications interface RS 232
10. Adaptive filter enabled Adaptive operation will not be performed i e it will be held Vibration filters 1 and 2 can be switched No switching Both filter 1 and filter 2 are en abled Vibration Filter Switching with the DFSEL PNSEL input Selection 1 Open Vibration filter 1 Closed Vibration filter 2 Switching with command direction Forward Vibration filter 1 Reverse Vibration filter 2 9 17 9 2 Parameter Tables Power acad Setting Explanation Deau Unit d p name setting range Set the operating pattern for normal mode autotuning Hotation direction Forward to reverse two rotations 1 Rotation direction Reverse to forward two rotations 2 Rotation direction Forward to forward two rotations 0 to 7 us Autotuning 3 Rotation direction Reverse to reverse two 25 Operation rotations in Setting 4 Rotation direction Forward to reverse one rotation 5 Rotation direction Reverse to forward one rotation Rotation direction Forward to forward one rotation 7 Rotation direction Reverse to reverse one rotation n Set the allowable operating range for the Servomotor Overrun Limit nue S eh te 0 1 ro 0 to l The overrun limit function is disabled if the parameter 10 Setting is setto 0 tation 1000 Set the instantaneous speed observer Instantaneous Speed Observer ee Disabled O to 1 P seung Enabled Notch Filter 2 Set the notch frequency of the resonance suppres
11. Encoder Phase A E Output O Conforms to EIA RS 422A 49 B Load resistance Encoder Phase B 120 Q min PA Output 6 48 B OQ 23 Z Encoder Phase Z _7 Output O 42 ABAT Backup Battery Input 1 43 A BATCOM 50 FG Frame ground 1 If a backup battery is connected a cable with a battery is not required 3 11 Line driver output 3 1 Servo Drive Specifications Bl Control I O Signals CN1 Control Inputs ae Symbol Name Function Interface conte No mode 424AVNCW 24 V Open collector Input for Command Pulse Input terminals for position command pulses 2 24VCC 24 V Open collector Input These are selected by setting the Command Pulse Input W for Command Pulse Selection Pn40 to O CW Reverse Pulses Input PULS FA Feed Pulses Input Cw or 90 Phase Difference PULS FA Pulse Input Phase A Line Driver input Maximum response frequency 500 kpps Open collector input Position Maximum response frequency 200 kpps Any of the following can be selected by using the Pn42 set ting reverse and forward pulses CW CCW feed pulse and direction signal PULS SIGN 90 phase difference phase A B signals FA FB I CCW Forward Pulse Input SIGN FB pirection Signal Ccw or 90 Phase Difference SIGN FB Pulse Input Phase B 12 to 24 VDC Power Power supply input terminal 12 to 24 VDC for sequence 24VIN All Supply Input inputs Reverse Dr
12. R88A CAGA010S ae R88A CAGA015S dee R88A CAGA020S R88A CAGA030S R88A CAGA040S TE R88A CAGA050S ua R88A CAGBOOS3S R88A CAGB003B R88A CAGBO005S R88A CAGBOOBB R88A CAGBO10S R88A CAGBO10B R88A CAGBO15S R88A CAGB015B R88A CAGBO20S R88A CAGBO20B R88A CAGBOSOS R88A CAGBOSOB R88A CAGB040S R88A CAGB040B R88A CAGB050S R88A CAGBOBOB R88A CAGCOO3S R88A CAGC003B R88A CAGCOO5S R88A CAGCO005B R88A CAGC010S R88A CAGC010B R88A CAGCO15S R88A CAGC015B R88A CAGC020S R88A CAGC020B R88A CAGC030S R88A CAGCOSOB R88A CAGC040S R88A CAGC040B R88A CAGC050S R88A CAGC050B R88A CAGD003S R88A CAGD003B R88A CAGD005S R88A CAGDO005B R88A CAGD010S R88A CAGDO 10B R88A CAGD015S R88A CAGD015B R88A CAGD020S R88A CAGDO20B R88A CAGD030S R88A CAGDOSOB R88A CAGD040S R88A CAGD040B R88A CAGD050S R88A CAGD050B 2 1 Standard Models Model Specifications For Servomotor without For Servomotor with brake brake R88A CAGE003S Bia R88A CAGE005S oes 1 500 r min Servomotors of 7 5 kW 1 000 r min Servomotors of 6 kW Note There are separate connectors for power and brakes for 3 000 r min Servomotors of 50 to 750 W Flat Servomotors and Servomotors of 6 kW or higher Therefore when a Servomotor with a brake is used it will require both a Power Cable for a Servomotor without a brake and a Brake Cable 2 16 Standard Models and Dimensions Standard Models and Dimensions 2 1 Standard Models B Brake Cables Standard Cables Spe
13. Refer ence page 7 22 7 24 7 25 7 26 7 30 7 32 7 33 7 35 7 2 n Adjustment Functions Adjustment Functions c 7 1 Gain Adjustment Gain Adjustment Procedure Start of adjustment Use automatic adjustment s command input possible Realtime autotuning setting Realtime autotuning Normal mode autotuning Will rigidity also be set automatically Fit gain function Is operation OK No Yes Reset of Is operation OK automatic adjustment function Default setting Manual tuning Is operation OK No Yes Reset of automatic adjustment function Writing in EEPROM End of adjustment Consult your OMRON representative B Gain Adjustment and Machine Rigidity Do the following to increase the machine rigidity e Install the machine on a secure base so that it does not wobble Use couplings that have a high rigidity and that are designed for servo systems Use a wide timing belt and use a tension within the allowable axial load for the Servomotor Use gears with small backlash The specific vibration resonance frequency of the mechanical system has a large impact on the gain adjustment The servo system responsiveness cannot be set high for machines with a low resonance frequency low machine rigidity 7 3 7 2 Realtime Autotuning 7 2 Realtime Autotuning Realtime autotuning estimates the load inertia of the machine in rea
14. The coupling system between the Servomotor shaft and the mechanical system has eccentricity or loose screws or the torque is fluctuating due to engagement between pulleys or gears The load s moment of inertia exceeds the Servo Servomotor Drive s allowed value rotation is unstable The pulse signal line s connections are loose The gain is wrong The CN1 input signal is chattering The ambient temperature is too high The Servomotor is overheating The Servomotor is overloaded vibrating THE Doing Power is supplied to the brake is l i i holding brake ineffective The Servomotor does not stop or is hard to stop even if the RUN Command Input RUN is turned OFF while the Servomotor is rotating The load inertia is too large The stop circuit failed 8 17 Probable cause Items to check The Servomotor is mechanical system Countermeasures Check the wiring of the Servomotor Power Cable s phases U V and W Wire correctly and check the Encoder Cable s wiring Check the mechanical system s coupling section Try rotating the Servomotor without Review and adjust the machine a load Disconnect it from the mechanical system e Lighten the load e Replace the Servomotor and Servo Drive with higher capacity models Check the pulse signal wiring at the Wirecard Controller and Servo Drive y Check the Controllers command Set the Servo Dri
15. 29 29 jGryBlak j RUN 30 30 30 _ Blue Red 4 ECRST VSEL2 81 31 HH 31 BiueBak 4 RESET 82 82 32 PKRed 4 TVSEL 88 38 34 84 34 Green Red 4 READYCOM 85 L 38 1 V GreeniBlac a READY 36 36 36 Orange Red 4 ALMCOM 87 1 87 Servo Drive Connector 38 38 38 _ Gray Red 4 INPCOWTGONCOM Connector plug 39 39 V 3e GrayBlack 4j INP TGON 10150 3000PE Sumitomo 3M 40 40 H 40 BueRed 5 OUTM2 Connector case 4 IM at 10356 E Gunso 42 42 42 PhKRed S BAT pag 148 71 48 jen Bak BAIOND i L44 44 44 Green Red 5 CWLD Terminal Block Connector 45 45 Connector socket XG4M 5030 46 46 46 OrangeRed 5 GCWLD OMRON a7 H 47_ Strain relief XG4T 5004 as ra OOC S raek 38 N 50 H 50 k 50 Orange Black canbe hell S FG X J AWG28 x 25P UL2464 3 95 3 4 Cable and Connector Specifications B Connector Terminal Block Conversion Unit The Connector Terminal Block Conversion Unit can be used along with a Connector Terminal Block Cable XW2Z J B24 to convert the Servo Drive s control I O connector CN1 to a terminal block XW2B 50G4 M3 screw terminal block 49 4 h mm I C mu
16. 5 88 Operating Functions Operating Functions 5 16 User Parameters Pn69 Stop Selection with Servo OFF Use this parameter to set the operation to be performed after Servo OFF status is entered i e after RUN CN1 pin 29 changes from ON to OFF Operation during deceleration and after stopping e Clearing the deviation counter e The relations between set values operation and deviation counter processing for this parameter are the same as for the Stop Selection with Main Power OFF Pn67 Pn6A Brake Timing When Stopped Use this parameter to set the brake timing from when the Brake Interlock Output BKIRCOM CN1 pin 10 BKIR CN1 pin 11 turns OFF i e braking held until the Servomotor is deenergized servo free when Servo OFF status is entered while the Servomotor is stopped e When the RUN Command Input is turned OFF while the Servomotor is stopped the Brake Interlock Signal BKIR will turn OFF and the Servo will turn OFF after the time set for this parameter setting x 2 ms elapses RUN Command ay DL Brake Interlock BKIR Released Hold Actual brake Servomotor ON OFF ON OFF status Pn6A 4 Make the setting as follows to prevent the machine workpiece from moving or falling due to the delay in the brake operation tb Brake timing when stopped setting x 2 ms gt tb e Refer to 5 10 Brake Interlock on page 5 20 for more information 5 89 5 16 User Parameters Pn6B
17. 5 88 Stop Selection with Servo OFF Pn69 5 89 SUI de absSOIDG S visae PE Rete e 4 34 Surde supDpresSOFScviaesd etri Pis ve e Dto Pues QuoD a baud 4 39 Switching the Control Mode sssssse 5 11 system block diagrams seesesesessssss 1 5 system configuration ceeseeeeeseeeeeeesss 1 2 T terminal block wire sizes eeeeeseeesssss 4 24 terminal block wiring sseeeseeeeeesssss 4 26 Torque Command Filter Time Constant Pn14 5 60 Torque Command Filter Time Constant 2 Pn1C 5 61 Torque Command Input TREF1 3 12 Torque Command Input TREF2 3 12 Torque Command Scale PN5C 5 83 Torque Command Speed Limit Selection Pn5B 5 83 ielcoll Xoejpjigo MNT 5 8 torque control mode adjustment 7 25 TONGUE WAM S DT 5 25 Torque Limit Selection PnO3 5 52 Torque Limit Switch TLSEL 3 13 Torque Output Direction Switch Pn5D 5 83 Tila OD CK ALO Nacsa P H 6 28 TROUDISSIOOUING sus rettet pet vidi edu sa ein co insueta 8 6 U UL and CSA Standards cccccccsseeeeeeeeeeseeeeeeaeeeees 1 10 Undervoltage Alarm Selection Pn65 5 87 Unit No Setting P
18. Chapter 4 System Design Chapter8 Troubleshooting 15 Table of Contents jay exe 0 1 2 9 fc 1 Read and Understand This Manual eeeseeeeeesss 2 PRECAUTIONS Tor Safe USO iniri e e ERE I c a 5 Items to Check When Unpacking eeeeeeeeeeee 11 ADOUut AIS Matiul saucaceci ineo Fe Eat tas on eoe been enge ibm is peaeodus 15 Chapter 1 Features and System Configuration 1 1 Gl M P 1 1 1 2 System Configuration eee ere erede reu Eie a seta deett 1 2 1 3 Names of Parts and Functions seeseeeseeeseeennnnene 1 3 1 System Boek DIaOIalTIS saisi iu ete Eun be nce Ebene end 1 5 1 5 Applicable Standards iret eee dae ast ies 1 10 Chapter 2 Standard Models and Dimensions 2 1 standard Models ieee ne ete ene enn Pe en dietus abo Ree Lu i Eo due 2 1 2 2 External and Mounting Hole Dimensions 2 25 Chapter 3 Specifications 3 1 Servo Drive SbeecllicallOfls ssaieditet toeoe mette o pone e ies etes 3 1 3 2 Servomotor SpPeEcifications cccccccccsescccesececeeceeseeeeseneeeseeeesseeeeeas 3 32 3 3 Decelerator SPeCifiCationNS s sies 3 47 3 4 Cable and Connector Specifications eeeeeeeeeeeeee 3 57 3 5 Servo Relay Units and Cable Specifications 3 99 3 6 Parameter Unit Specifications c cc cccccccccse
19. IDT D CP1L IDT D 3 phase 200 to 240 VAC 50 60 Hz S CP1H X40DT D Output terminal block e COM for CIO 0100 00 Pulse Origin search 0 CIO 0101 02 24 VDC input terminal 24 VDC input terminal k COM CIO 0101 00 to 0101 03 Input terminal bloc COM CIO 0000 D 2 Precautions for Correct Use 9 7 CWO CIO 0100 00 amp CCWO CIO 0100 01 M o O COM for CIO 0100 01 B O pU EE Le Pulse 0 origin input signal CIO 0001 03 Lp Main circuit power supply OFF ON MC1MC2 Main circuit contact Surge killer Servo error display Ground to 1000 or less TB Reactor o H aH MC1 MC2 Servomotor Power Cable Req R88A CAGO Bue Yellow V IND oO m NN EMEN ALMCOM 10 BKIRCOM Brake Cable R88A CAGALIB R88A CAGELIB Incorrect signal wiring can cause damage to Units and the Servo Drive e Leave unused signal lines open and do not wire them e Do not share the power supply for brakes 24 VDC with the 24 VDC power supply for controls The diode recommended for surge absorption is the RU 2 manufactured by Sanken Electric or the equivalent 9 1 Connection Examples B Connection Example 8 Connecting to SYSMAC CJ1M Input for the output power supply 3 Origin input DC24V signal OV LD PCS Fostonng DC24V 13 output OV LD 17 DC24V Origi
20. Reverse Pulse CWLD cccccsseseeeeeeeeseeeeeeaeeees 3 14 Reverse Torque Limit Input NCL 3 12 Rotation Speed for Motor Rotation Detection CP ING 2 PR RPM T 5 86 rotational speed characteristics for 1 000 r min SOLVOITIOLOIS xttiot siti Eee ute ase eqs 3 44 rotational speed characteristics for 2 000 r min SOLVOITIOIOIS aoa qtii ascendi idis bd derat Cors edad 3 42 rotational speed characteristics for 3 000 r min Flat SErVOMOTOTS euor res inak aoia ini 3 40 rotational speed characteristics for 3 000 r min Ser VOIOLOIS vases cn ie peere ee Belus EEEE Edena 3 36 RS 232 Baud Rate Setting PnOC 5 57 RS 485 Baud Rate Setting PnOD 5 57 RS 485 communications cables 4 15 RUN Command RUN eseessess 3 13 3 24 S S curve Acceleration Deceleration Time Settings POSA S a a eE 5 82 Sensor IMU asare e e a a e 3 19 Sensor ON Input SEN eeeeeeeeeeeeeee 3 12 SEQUENCE INPUT stems tinct ude tenait oida in sre PeEads 3 19 Sequence Output eeeeseseeeee seen e nennen nnns 3 26 Servo Drive characteristics ssssssuss 3 2 Servo Drive dimensions eese 2 25 Servo Drive functions ccceceecceseeceeceeeeeeseeeeesseeeess 1 4 Servo Drive general specifications 3 1 Servo Driv
21. Servo Drive TERR R88D G Personal computer lt Wiring Personal computer Servo Drive Fa sei sal re Cable AWG28 x 3C UL20276 PC Connector 17JE 13090 02 D8A DDK Ltd e Communications with the Host Device Precautions Aft nathe sta the S Dri initiat M for Correct Use er confirming the startup of the Servo Drive initiate communications with the host device Note that irregular signals may be received from the host interface during startup For this reason take appropriate initialization measures such as clearing the receive buffer 3 84 Specifications Specifications 3 4 Cable and Connector Specifications B Communications Cables 3 85 Cable Models Cables for RS 485 Communications Model Length L Outer diameter of sheath 4 2 dia Connection Configuration and Dimensions L Weight Approx 0 1 kg Wiring Servo Drive Servo Drive GND 4 4 GND raum RS485 RS485 t a ea Cable AWG28 x 3C UL20276 3 4 Cable and Connector Specifications Connector Specifications E Control I O Connector R88A CNU11C This connector connects to the control I O connector CN1 on the Servo Drive Use this connector when preparing a control cable yourself Dimensions Connector plug 10150 3000PE Sumitomo 3M Connector case 10350 52A0 008 Sumitomo 3M B Encoder Connectors These connectors are used for
22. e Use 0 30 to 1 25 mm wire AWG22 to AWG16 Precautions ME for Correct Use The wire inlet is 1 8 mm height x 2 5 mm width E i IEEERERE L eS es sis E e Strip the insulation from the end of the wire for 6 mm as shown below 3 96 Specifications 3 4 Cable and Connector Specifications Specifications 3 97 XW2B 50G5 M3 5 Screw Terminal Block dimensions 43 5 45 3 e When using crimp terminals use crimp terminals with the following Precautions for Correct Use e When connecting wires and crimp terminals to a terminal block tighten Round Crimp Terminals 3 7 mmM dia them with a tightening torque of 0 59 N m Fork Terminals Er 6 8 mm max EIC 3 7 mm 6 8 mm max Applicable Crimp Terminals Round Crimp Terminals Fork Terminals Applicable Wires AWG22 16 0 3 to 1 25 mm2 AWG16 14 1 25 to 2 0 mm AWG22 16 0 3 to 1 25 mm AWG16 14 1 25 to 2 0 mm2 3 4 Cable and Connector Specifications XW2D 50G6 M3 Screw Terminal Block e Dimensions XG4A MIL Connector DO LE i e When using crimp terminals use crimp terminals with the following Precautions di for Correct Use Imensions e When connecting wires and crimp terminals to a terminal block tighten them with a tightening torque of 0 7 N m Round Crimp Terminals Fork Terminals 3 2 mm dia 5 8 mm max EC32 mm 5 8 mm max Applicable Crimp Terminals
23. 1 2 7 3 GainkAdiUStmMenl enn aa aa e EC RES 7 1 Purpose of the Gain Adjustment sssesssssssss 7 1 Gain Adjustment Methods an eene a 7 2 Gain Adjustment Procedure cccccccccssesceceeeeeeseesseessaaeees 7 3 Realtime Autotuning eese 7 4 Realtime Autotuning Setting Method 7 5 Operatinadtrocedileog se scr dort ento decte Na ee Pe dre S decus 7 6 Rit Calm s rie HO ier tote ee eU MEL UU RE 7 7 AGG DIVE ING Kee iretre eucrorn Ex SUME ns D MI tc E 7 11 Automatically Set ParaMmeters cccccccccesseeeecseeeeeeseeeeeeaees 7 12 Normal Mode Autotuning 7 14 Normal Mode Autotuning Setting Method 7 15 Automatically Set Parameters eeeseesseeessss 7 16 Disabling the Automatic Gain Adjustment FUNCIONE A e trae eae ete ince anes 7 19 Disabling Realtime Autotuning ccccccceseseesseseeseeeeeeeeeens 7 19 Disabling the Adaptive Filter esses 7 20 Manual TUNNG e e 7 21 Basic SENINGS aa ener enorme ee tient none ence semen 7 21 Gain SWitGhinG UC HOT ss esee eter rere reete er eee Enn 7 26 Machine Resonance Control ccccssscecssececsseseecseeseeessaees 7 30 Automate Garn Sedi etm e temm EID 7 32 Instantaneous Speed Observer eeeeeeeeeses 7 33 Damping Conto
24. 4 2 dia 2j MM i N co 2 x 9 Y d Equalizing Circuits Single phase BWZ Series Three phase BXZ Series 4 34 System Design System Design 4 3 Wiring Conforming to EMC Directives Bi Noise Filters for the Power Supply Input Use the following noise filters for the Servo Drive s power supply Servo Drive model Rated Max leakage current current 60 Hz R88D GTA5L R88D GTO1L R88D GT02L R88D GTO4L R88D GT01H R88D GT02H R88D GT04H R88D GT08H R88D GT10H R88D GT15H R88D GT20H R88D GT30H R88D GT50H R88D GT75H Dimensions SUP EK5 ER 6 100 2 0 4 35 Two 4 5 x 6 75 dia Two 4 5 dia Six M4 Noise filter for the power supply Input Manufacturer 1mA 3 5 mA 1 mA Okaya Electric Industries Co Fn 3 5 mA Ltd 3 5 mA 8 mA 3SUP HQ10 ER 6 53 1 2 0 70 43 terminal M4 E ex am Rem T T Ecce Cover mounting 52 Cover Noise Filter 4 3 Wiring Conforming to EMC Directives 3SUP HU30 ER 6 3SUP HL50 ER 6B 115 150 2863 0 Two 5 5 x 7 dia Ground terminal M4 70 43 10 Cover mounting screw M3 Cover c Noise Filter W Circuit Diagrams e SUP EK5 ER 6 3SUP HQ10 ER 6 E Ml cce eL S IN OUT vu 3SUP HU30 ER 6 3SUP HL50 ER 6B B Noise Fil
25. 8 18 Troubleshooting Troubleshooting 8 3 Troubleshooting Symptom Vibration is occurring at the same frequency as the power supply The position is misaligned Position misalignment occurs without an alarm being output 8 19 Inductive noise is occurring There is an error in the coupling of the mechanical system and the Servomo tor Noise is entering the Devia tion Counter Reset Input ECRST The gain is wrong The load inertia is too large Probable cause Items to check Check whether the Servo Drive control signal lines are too long Check to see whether control signal lines and power supply lines are bundled together Check whether the coupling of the mechanical system and the Servo motor is misaligned Check whether the control signal lines and power supply lines are bundled together Check the following e Check whether the load is too large e Check whether the rotation speed of the Servomotor is too high Countermeasures Shorten the control signal lines e Separate control signal lines from power supply lines e Use a low impedance power supply for control signals Correct the coupling between the mechanical system and the Servomotor Separate the control signal lines from the power supply lines or take other measures against noise e Perform normal mode autotuning e Perform manual tuning e Adjust the gain e Review the load cond
26. Blue Black i AWG24x4P UL20276 Servo Drive Connector Servomotor Connector Connector Straight plug Crimp type I O Connector Molex Japan N MS3106B20 29S Connector pins Japan Aviation Electronics 50639 8028 Molex Japan Cable clamp N MS3057 12A Japan Aviation Electronics Wiring 30 to 50 m Servo Drive Servomotor EOV P T BAT Bar 4 9mwe XK Ba AWG25 x 6P UL2517 Servo Drive Connector Servomotor Connector Connector Connector Crimp type I O Connector Molex Japan N MS3106B20 29S Japan Aviation Electronics Connector pins Connector pins 50639 8028 Molex Japan N MS3057 12A Japan Aviation Electronics 3 62 Specifications Specifications 3 4 Cable and Connector Specifications Absolute Encoder Battery Cable Specifications ENS 3 63 Cable Models Model Length L R88A CRGDOR3C 0 3m Connection Configuration and Dimensions 43 5 300 43 5 Servo Drive an an Servomotor Wiring Servo Drive Servomotor 54280 0609 Molex Japan Connector plug 55100 0670 Molex Japan 3 4 Cable and Connector Specifications Servomotor Power Cable Specifications These cables connect the Servo Drive and Servomotor Select the cable matching the Servomotor Precautions l for Correct Use Use a robot cable if the Servomotor is to be used on moving parts E Power Cables for Servomotors without B
27. Instantaneous Suppression Tracking the Resonance Point not Change Torque command A Automatic frequency tracking Frequency Adaptive filter Notch filter 7 31 Point with a Frequency that Does Lowering All Resonance Peaks in a High Frequency Range Torque command after filter ie Cut off frequency Toque filter 7 5 Manual Tuning Automatic Gain Setting Automatic gain setting initializes the control parameters and the gain switching parameters to gain settings for normal mode autotuning to match the rigidity before manual tuning is performed Precautions e Stop operation before making changes when executing the automatic gain for Correct Use setting function E Operating Procedure Hefer to Front Panel Display Example on page 7 9 1 Stop operation 2 Start the automatic gain setting function in the fit gain window on the front panel If the fit gain is completed normally F 54 will be displayed and E o will be displayed if itis completed with an error The display can be cleared using the keys 3 Write data to the EEPROM if the results are to be saved B Automatically Set Parameters The following parameters are set automatically Parameter No Parameter name Pn10 Position Loop Gain Pn11 Speed Loop Gain Pn12 Speed Loop Integration Time Constant Pn13 Speed Feedback Filter Time Constant Pn14 Torque Command Filter Time Constant Pn18 Position Loop Gain 2
28. M16 depth 32 Model LL R88M G6K010L 340 5 R88M G6K010L B J 380 5 Note The standard models have a straight shaft Models with a key and tap are indicated with S2 at the end of the model number 2 44 Standard Models and Dimensions 2 2 External and Mounting Hole Dimensions Parameter Unit Dimensions B R88A PRO2G Hand held Parameter Unit sa c 9 sa c Qo E C O c D O O O p O c 14 e QU MD connector 2 45 2 2 External and Mounting Hole Dimensions Servomotor and Decelerator Combinations 3 000 r min Servomotors 1 11 Motor model 1 9 for flange size 1 21 1 33 1 45 No 11 R88G R88M G05030L R88M G10030L R88M G20030L R88M G40030L R88M G75030L R88M G1KO30T R88M G1K530T R88M G2K030T R88M G3K030T R88M G4K030T R88M G5K030T R88G HPG11B05100BL R88G HPG11B09050B Gear ratio 1 9 HPG14A21100BL R88G R88G Also used with HPG14A33050Bl HPG14A45050Bl R88M G10030L _ Also used with R88M G10030L R88G R88G R88G R88G R88G HPG11B05100BL HPG14A11100BL HPG14A21100BL HPG20A33100Bl HPG20A45100BL R88G R88G R88G R88G R88G HPG14A05200Bl HPG14A11200BL HPG20A21200BL HPG20A33200BL HPG20A45200BL R88G R88G R88G R88G R88G HPG14A05400BL HPG20A11400BL HPG20A21400BL HPG32A33400Bl HPG32A45400BL R88G
29. O1 O1 O an 17 6 3 00x10 1176 588 2 10 Q C2 oo 200 31 2 2 88x10 1323 661 2 10 3 54 Specifications 3 3 Decelerator Specifications Allow Allow Decelera able able mentary ys radial thrust econ Model mentary inertia rotation load load torque speed oi AAL AE AE ELARA DI REJICIEIESEEZERERE pe eme e e e e a ee e See e ee aeee Esaa eje e a iy e e e es e e e e pe e e a Eee mem om e esl ow oe re Ras m eu m nr pem pm m 3 80 R88G 5 il Cares eee po Note 1 The values inside parentheses are for 100 V Servomotors Note 2 The Decelerator inertia is the Servomotor shaft conversion value Note 3 The protective structure for Servomotors with Decelerators satisfies IP44 Note 4 The allowable radial load is the value at the LR 2 position Note 5 The standard models have a straight shaft with a key 3 55 3 3 Decelerator Specifications Decelerators for 3 000 r min Flat Servomotors Maxi rds Decelera Ar tor Weight Model y inertia rotation speed R88G 6 R88G 6 R88G 6 R88G 6 R88G 5 R88G 5 R88G 5 R88G 5 R88G 1000 15 5 5 R88G 556 27 3 5 R88G d 45 4 5 R88G ae a 7 5 Note 1 The values inside parentheses are for 100 V Servomotors Note 2 The Decelerator inertia is the Servomotor shaft conversion value Note 3 The protective structure for Servomotors with Decelerators satisfies IP44 Note 4 T
30. Q9 Outline Drawings Set bolt AT Four Z2 Four Z1 dia Four Z2 Key and Tap Dimensions QK Eug M depth L C2 dia 2 58 Standard Models and Dimensions Standard Models and Dimensions 2 2 External and Mounting Hole Dimensions B Backlash 15 Max 100 W 200 W 400 W Decelerators for 3 000 r min Servomotors Dimensions mm V5 Resc vmsrosPTooC 67 5 32 40 52 46 60 50_ C R8BG vASFOsBtO0CN 67 5 sa 40 se 4e 60 50 i