Home

STMICROELECTRONICS TSH80-TSH81-TSH82 Manual

image

Contents

1. Vout Vin 10 20 30 40 50 60 Time ns 0 04 0 02 S Vout Vin oO gt 7002 0 04 0 06 0 10 20 30 40 50 60 Time ns Figure 9 Channel separation Xtalk vs freguency Measurement configuration Xtalk 20log V0 V1 Figure 10 Channel separation Xtalk vs frequency Gain 11 Vcc 2 5V ZL 150Q 27pF VIN 20 30 40 4 1output 50 3 1output 60 70 Xtalk dB 80 2 1 output 1E 5 Freguency Hz Figure 11 Eguivalent noise voltage Gain 100 Vcc 2 5V No load Figure 12 Maximum output swing Gain 11 Vcc 2 5V RL 1500 30 3 ET 2 a Vout Tok 100 V 1 20 i N ee Vin SE O 0 gt gt 15 Ad ici 5 10 6 5 3 0 1 1 10 100 1000 0 0E 0 5 0E 2 1 0E 1 1 5E 1 2 0E 1 Frequency kHz Time ms ky 11 23 Inter Modulation Products TSH80 TSH81 TSH82 3 Inter Modulation Products The IFR2026 synthesizer generates a two tones signal F1 180kHz F2 280kHz each tone having the same amplitude level The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage The generator and
2. 1E 6 1E 7 Frequency Hz 1E 8 1E 9 Figure 18 Closed loop gain amp phase vs frequency Gain 10 Vec 5V Ry 150Q Tamp 25 C Figure 19 Closed loop gain amp phase vs frequency Gain 11 Vcc 5V R_ 1500 Tamb 25 C 200 150 100 gt Phase 50 10 Frequency Hz 1E 4 1E 5 1E 6 1E 7 1E 8 1E 9 50 30 20 10 1644 0 100 1E 5 1E 6 Freguency Hz 1E 7 150 1E 8 1E 9 Phase Figure 20 Large signal measurement positive Figure 21 Large signal measurement negative slew rate Gain 2 Vcc 5V Z 1500 5 6pF Vin 400mVpk Gain 2 Vcc 5V Z 1500 5 6pF Vin 400mVpk slew rate Vout V Gi ian 2 OE RIDI 20 40 60 Time ns 80 100 Vout V a i i o a NO 5 g 40 60 Time ns 80 100 lt 13 23 Inter Modulation Products TSH80 TSH81 TSH82 Figure 22 Small signal measurement rise time Gain 2 Vcc 5V Zl 1500 Vin 400mVpk Figure 23 Small signal measurement fall time Gain 2 Vcc
3. AYJ TSH80 TSH81 TSH82 Wide Band Rail to Rail Operational Amplifier with Standby Function 4 5V 12V operating conditions 3dB bandwidth 100MHz L Slew rate 100V us Output current up to 55mA Re Input single supply voltage Plastic Micro package Output rail to rail Specified for 1500 load Low distortion THD 0 1 D SO 8 Plastic Micro package SOT23 5 TSSOP and SO packages Description The TSH8x series offers single and dual operational amplifiers featuring high video performances with large bandwidth low distortion and excellent supply voltage rejection These TSSOP8 amplifiers feature also large output voltage swing Plastic Micro package and high output current capability to drive standard 150Q loads Running at single or dual supply voltage from 4 5V to 12V these amplifiers are tested at 5V 2 5V and 10V 5V supplies TSH80 SOT23 5 SO8 The TSH81 also features a standby mode which Output VOC i bij allows the operational amplifier to be put into a vec db oe standby mode with low power consumption and Non Inv n inv In ua sa high output impedance The function allows power i saving or signals switching multiplexing for high TSH81 SO8 TSSOP8 speed applications and video applications da STANDBY For board space and weight saving TSH8x series Inverting Input VCC is proposed in SOT23 5 TSSOP8 and SO 8 Non Inverting Input Output packages NC Application Out
4. 2 5V R 1500 Tamb 25 C Figure 4 Closed loop gain amp phase vs frequency Gain 11 Vcc 2 5V R 1500 Tamb 25 C 30 200 Phase 150 20 100 T Gain z gs 10 50 D S si a La O a 0 0 CIRIE ARI IN 50 10 100 1E 4 1E 5 1E 6 1E 7 1E 8 1E 9 Frequency Hz 30 mae eZ 0 Phase 20 50 A Gain ta ke o 10 5 5 O a 100 0 10 s a gt a 150 1E 4 1E 5 1E 6 1E 7 1E 8 1E 9 Frequency Hz Figure 5 slew rate Large signal measurement positive Figure 6 Large signal measurement negative slew rate Gain 2 Vcc 2 5V Z 150Q 5 6pF Vin 400mVpk Gain 2 Vcc 2 5V Z 1500 5 6pF Vin 400mVpk 3 2 1 0 Vout V 0 10 20 30 40 50 60 70 80 Time ns Vout V o 10 23 lt TSH80 TSH81 TSH82 Electrical Characteristics Figure 7 Small signal measurement rise time Gain 2 Vcc 2 5V ZI 150Q Vin 400mVpk Figure 8 Small signal measurement fall time Gain 2 Vcc 2 5V Zl 150Q Vin 400mVpk 0 06 Vin Vout V
5. 5V Zl 1500 Vin 400mVpk Vin Vout V Vout Time ns Vin Vout V 0 06 0 04 0 02 Vout 0 r Vin 0 02 0 04 0 06 0 10 20 30 40 50 60 Time ns Figure 24 Channel separation Xtalk vs freguency Measurement configuration Xtalk 20log V0 V1 Figure 25 Channel separation Xtalk vs frequency Gain 11 Vcc 5V ZL 1500 27pF VIN Xtalk dB 20 ee a Sse Frequency Hz Figure 26 Equivalent noise voltage Gain 100 Vcc 5V No load Figure 27 Maximum output swing Gain 11 Vcc 5V RL 150Q en nV VHz 30 25 20 100 1000 Frequency kHz Vin Vout V Vout 5 0E 2 1 0E 1 1 5E 1 2 0E 1 Time ms 0 0E 0 14 23 SZA TSH80 TSH81 TSH82 Inter Modulation Products The IFR2026 synthesizer generates a two tones signal F1 180kHz F2 280kHz each tone having the same amplitude level The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage The generator and the spectrum analyzer are phase locked for precision considerations Figure 28 Standby mode Ton Tof
6. 0256 K 0 8 0 8 L 0 45 0 60 0 75 0 018 0 024 0 030 L1 1 0 039 k c 0 25 mm 010 inch GAGE PLANE Qu zz ksjo_g wa ph Le l A1 i cry s CID lu 7 n KE o OP cry O rT 8 III q 0079397 D 21 23 Package Mechanical Data TSH80 TSH81 TSH82 6 3 SOT23 5 Package SOT23 5L MECHANICAL DATA mm mils DIM MIN TYP MAX MIN TYP MAX A 0 90 1 45 35 4 57 1 AI 0 00 0 15 0 0 5 9 A2 0 90 1 30 35 4 51 2 b 0 35 0 50 13 7 19 7 C 0 09 0 20 3 5 7 8 D 2 80 3 00 110 2 118 1 E 2 60 3 00 102 3 118 1 E1 1 50 1 75 59 0 68 8 e 0 95 37 4 el 1 9 74 8 L 0 35 0 55 13 7 21 6 A el M C e e reg A A1 E1 JE Vv L Y i b Lasi at D a 22 23 2 TSH80 TSH81 TSH82 Revision History 7 Revision History Date Revision Changes Feb 2003 1 First Release PPAP references inserted in the datasheet see Table Order Codes on Aug 2005 2 page 2 Information furnished is believed to be accurate and reliable However STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics Sp
7. the spectrum analyzer are phase locked for precision considerations Figure 13 Standby mode Ton Toff Vcc 2 5V Open Loop Figure 14 Group delay Gain 2 Vcc 2 5V ZL 1500 27pF Tamb 25 C Vin Vout V Ton Standby Toff dr 0 2E 6 4E 6 6E 6 8E 6 1E 5 Time s NETWORK Cor Aldis DELAY_5V A REF B REF 809 600 A Ha TR 4 58617 T 5 01 S997 sec 18 6 86 Hz DIV DIV STAR 1 000 1 8880 STOP eo Bee 888 008 Hz RBH 300 Hz ST 4 9 sec RANGE R 16 T 10dBm Figure 15 Third order inter modulation Gain 2 Vcc 2 5V ZL 1500 27pF Tamb 25 C 740kHz IM3 dBc ste F N sgokHz 7 Ne40kHz 0 1 2 3 4 Vout peak V 12 23 2 TSH80 TSH81 TSH82 Inter Modulation Products Figure 16 Closed loop gain amp phase vs frequency Gain 2 Vcc 5V R 1500 Tamp 25 C Figure 17 Overshoot function of output capacitance Gain 2 Vcc 5V Tamb 25 C 200 100 Phase 100 1E 4 1E 5 1E 6 1E 7 Frequency Hz 1E 8 200 1E 9 Gain dB 10 5
8. 9 V Low Level Output Volt V ol ow Level Output Voltage R 10kQ to GND 4 93 m Tmin lt Tamb lt Tmax R 1500 to GND F 10MHz GBP Gain Bandwidth Product Aver 11 65 MHz Avcer 10 55 Bw Bandwidth 3dB Aver 100 MH m P RL 1502 30pF to GND Aver 2 SR slw Rai R_ 1500 C to GND di Sele C 5pF 117 vi C 30pF 68 118 dm Phase Margin R 15062 to gnd 40 o 7 23 Electrical Characteristics TSH80 TSH81 TSH82 8 23 Table 4 Vec 5V Vec 5V Vic GND Tamb 25C unless otherwise specified Symbol en Parameter Equivalent Input Noise Voltage Test Condition F 100kHz Min Typ 11 Max Unit nv VHz THD Total Harmonic Distortion Avcl 2 F 4MHz R 15062 30pF to gnd Vout 1Vpp Vout 2Vpp 61 54 dB IM2 Second order inter modulation product Aver 2 Vout 2VPP R 150 to gnd Fin1 180kHz Fin2 280KHz spurious measurement 100kHz dBc IM3 Third order inter modulation product Aver 2 Vout 2VPP R 1509 to gnd Fin1 180kHz Fin2 280KHz spurious measurement 400kHz dBc AG Differential gain AycL 2 Ry 150Q to gnd F 4 5MHz Vou 2Vpp 0 5 Df Differential phase Aver 2 R 1502 to gnd F 4 5MHz Vout 2VPp 0 5 Gf Gain Flatness F DC to 6MHz AycL 2 0 2 dB Vo1 Vo2 Channel Separation F 1MHz to 10MHz 65 dB 2 TSH80 TSH81 TSH82 Elec
9. R Slew Rat R_ 1500 C to 2 5V vi ew hate C 5pF 104 j C 30pF 60 105 dm Phase Margin R 150Q 30pF to 2 5V 40 en Equivalent Input Noise Voltage F 100kHz 11 nV NHz AycL 2 F 4MHz ae i R 1500 30pF to 2 5V THD Total Harmonic Distortion dB Vout 1Vpp 61 Vout 2Vpp 54 5 23 Electrical Characteristics TSH80 TSH81 TSH82 Table 3 Vect 5V Vec GND Vic 2 5V Tamb 25 C unless otherwise specified Symbol Parameter Test Condition Min Typ Max Unit AvcL 2 Vout 2Vpp R 1500 to 2 5V IM2 Second order inter modulation Fin1 180kHz 76 dBc product Fin2 280kHz spurious measurement 100kHz AvcL 2 Vout 2Vpp R 1500 to 2 5V IM3 Third order inter modulation Fin1 180kHz 68 dBc product Fin2 280KHz spurious measurement 400kHz Aver 2 Rr 1500 to AG Differential gain 2 5V 0 5 F 4 5MHz Vou 2Vpp AycL 2 RL 150Q9 to Df Differential phase 2 5V 0 5 di F 4 5MHz Vou 2VPpp Gf Gain Flatness F DC to 6MHz Avc_ 2 0 2 dB Vo1 Vo2 Channel Separation F 1MHz to 10MHz 65 dB Table 4 Vect 5V Voc 5V Vic GND Tamb 25 C unless otherwise specified Symbol Parameter Test Condition Min Typ Max Unit Tamb 25 C 0 8 10 IViol Input Offset Voltage wid mV ki p 3 Tmin lt Tamb lt Tmax 12 Input Offset Voltage Drift vs 6 AVio in 9 Tmin lt Tamb lt Tmax 2 uV eC Tamb 25 C 0 1 3 5 li Input Offset Current am
10. b A ku p Tmin lt Tamb lt Tmax 5 j Tamb 25 C 6 15 Input Bias Current na A Li i Tmin lt Tamb lt Tmax 20 H Cin Input Capacitance 0 7 pF Tamb 25 C 9 8 12 3 l Supply Current per Operator n mA PES i P Tmin lt Tamb lt Tmax 13 4 4 9 lt Vic lt 3 9V amp Common Mode Rejection Ratio Vout GND CMR avie 8Vio Tamb 25 C 5 me aB Tmin lt Tamb lt Tmax syp Supply Voltage Rejection Ratio Tamb 25 C 71 77 db 6VCC Vio Trin T ds Umax 65 6 23 2 TSH80 TSH81 TSH82 Electrical Characteristics 2 Table 4 Vect 5V Voc 5V Vic GND Tamb 25 C unless otherwise specified Symbol Parameter Test Condition Min Typ Max Unit Power Supply Rejection Ratio t li m PSR 8VCC 3Vout Positive amp Negative Rail 75 dB R_ 1500 to GND A Large Signal Voltage Gai ee dB vd arge Signal Voltage Gain Tamp 25 C 75 86 Tmin lt Tamb lt Tmax 70 Tamb 25 C Vig 1 x Vout to 1 5V Vig 1 i Vout to 1 5V ISourcel 35 55 Output Short Circuit Current Sink 30 55 mA 2 Source Tuir Te Tnax Vig t1 Vout to 1 5V Vig 1 Vout to 1 5V ISourcel A Sink Tamb 25 C RL 1500 to GND 42 436 RL 6000 to GND 4 85 R 2kQ to GND 4 9 V L oh High Level Output Voltage R 10k9 to GND 4 93 V Tmin lt Tamb lt Tmax R 1500 to GND Tamb 25 C RL 1500 to GND 4 63 4 4 R 6000 to GND 4 86 RL 2kQ to GND 4
11. ecifications mentioned in this publication are subject to change without notice This publication supersedes and replaces all information previously supplied STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners 2005 STMicroelectronics All rights reserved STMicroelectronics group of companies Australia Belgium Brazil Canada China Czech Republic Finland France Germany Hong Kong India Israel Italy Japan Malaysia Malta Morocco Singapore Spain Sweden Switzerland United Kingdom United States of America 2 www st com 23 23
12. ed chroma signal the first level contains no luma The luma gives various amplitudes which define the saturation of the signal The chrominance gives various phases which define the color of the signal Differential phase respectively differential gain distortion is present if a signal chrominance phase gain is affected by luminance level They represent the ability to uniformly process the high frequency information at all luminance levels When differential gain is present color saturation is not correctly reproduced The input generator is the Rhode amp Schwarz CCVS The output measurement is done by the Rhode and Schwarz VSA Figure 32 Measurement on Rhode and Schwarz VSA eal ta Ea Ta 0 00 100 00 99 95 99 99 5979 59 07 Diff G rei os peal neg peak ff PI 00 o a a Ta 002 on 015 0 06 010 02 025 it If Soir usato Rese tin Table 6 Video results Parameter Value Vcc 2 5V Value Vcc 5V Unit Lum NL 0 1 0 3 Lum NL Step 1 100 100 Lum NL Step 2 100 99 9 Lum NL Step 3 99 9 99 8 Lum NL Step 4 99 9 99 9 Lum NL Step 5 99 9 99 7 Diff Gain pos 0 0 Diff Gain neg 0 7 0 6 Diff Gain pp 0 7 0 6 Diff Gain Step1 0 5 0 3 Diff Gain Step2 0 7 0 6 Diff Gain Step3 0 3 0 5 Diff Gain Step4 0 1 0 3 Diff Gain Step5 0 4 0 5 Diff Phase pos 0 0 1 deg Diff Phase neg 0 2 0 4 deg Diff Phase pp 0 2 0 5 d
13. eg Diff Phase Step1 0 2 0 4 deg Diff Phase Step2 0 1 0 4 deg Diff Phase Step3 0 1 0 3 deg Diff Phase Step4 0 0 1 deg Diff Phase Step5 0 2 0 1 deg 17 23 Precautions on Asymmetrical Supply Operation TSH80 TSH81 TSH82 5 18 23 Precautions on Asymmetrical Supply Operation The TSH8X can be used either with a dual or a single supply If a single supply is used the inputs are biased to the mid supply voltage Vcc 2 This bias network must be carefully designed in order to reject any noise present on the supply rail As the bias current is 15uA you must carefully choose the resistance R1 not to introduce an offset mismatch at the amplifier inputs IN Cin i OUT Vec pal R1 RE RL Res c3 L RISC1L Combe z T lt gt R4 R1 10kQ will be convenient C1 C2 C3 are bypass capacitors from perturbation on Vcc as well as for the input and output signals We choose C1 100nF and C2 C3 100uF R2 R3 are such that the current through them must be superior to 100 times the bias current So we take R2 R3 4 7kQ Cin as Cout are chosen to filter the DC signal by the low pass filters R1 Cin and Rout Cout By taking R1 10kQ RL 150Q and Cin 2uF Cout 220uF we provide a cutoff frequency below 10Hz Figure 33 Use of the TSH8x in gain 1 configuration IN Cin 1k gt Cout our z za TT So
14. f Vcc 5V Open Loop Figure 29 Group delay Gain 2 Vec 5V ZL 1500 27pF Tamb 25 C Vin Vout V Ton See Toff 0 2E 6 4E 6 6E 6 8E 6 Time s NETWORK Cor A REF B REF GROUP DELAY 18V 4 MKR 8 008 11 00n T R 10 808 900 Hz d 94640 dB d2 412n sec t dB JC sec 1 T ci DIV DIV START 18 000 0e0 Hz 1 000 1 090n STOP 20 888 000 000 Hz RBW 360 Hz ST 40 9 sec RANGE R 18 T 19dBm Figure 30 Third order inter modulation Gain 2 Vec 5V ZL 1500 27pF Tamb 25 C a 80kHz D 50 oO 740kHz 0 70 era Cao it VEL Ne 9 Hat de iS ae Y 640kHz 380kHz 100 0 1 2 3 4 Vout peak V 2 15 23 Testing Conditions TSH80 TSH81 TSH82 4 4 1 4 2 16 23 Testing Conditions Layout precautions To use the TSH8X circuits in the best manner at high frequencies some precautions have to be taken for power supplies First of all the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return Power supply bypass capacitors 4 7uF and ceramic 100pF should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion The power supply capacitors must be incorporated for both the negative and the posit
15. ge Rejection Ratio Tamb 25 C 68 75 dB dVcc dVio Tmin lt Tamb lt Tmax 65 Power Supply Rejection Ratio si i PSR 8Vcc 8Vout Positive amp Negative Rail 75 dB R 1500 to 1 5V A Large Signal Voltage Gai et dB vd arge Signal Voltage Gain Tanp 25 C 75 84 Tmin lt Tamb lt Tmax 70 Tamb 25 C Vig t1 Vout to 1 5V Vig 1 i Vout to 1 5V Sourcel 35 55 Output Short Circuit Current Sink 33 55 TA 2 Source Tain s Tami las Vig 1 Vout to 1 5V Vig 1 Vout to 1 5V 28 ISourcel 28 Sink 4 23 2 TSH80 TSH81 TSH82 Electrical Characteristics 2 Table 3 Vec 5V Vec GND Vic 2 5V Tamb 25C unless otherwise specified Symbol Parameter Test Condition Min Typ Max Unit Tamb 25 C R 1509 to GND 4 2 4 36 R 6000 to GND 4 85 RL 2kQ to GND 4 90 RL 10kQ to GND 4 93 Von High Level Output Volt ioni l V on SR ee eae RL 600Q to 2 5V 4 92 R 10kQ to 2 5V Tmin lt Tamb lt Tmax RL 1500 to GND 4 1 R 1500 to 2 5V 4 4 Tamb 25 C R 1500 to GND 48 150 R 6000 to GND 54 R 2kQ to GND 55 R 10kQ to GND 56 v Low Level Output Volt a N io v ol sibi ai R 6000 to 2 5V 76 m R 10kQ to 2 5V Tmin lt Tamb lt Tmax RL 150Q to GND 200 RL 1500 to 2 5V 450 F 10MHz GBP Gain Bandwidth Product Avc_ 11 65 MHz Avcr 10 55 Bw Bandwidth 3dB Net 87 MH eres i R 1500 to 2 5V Avc_ 2 S
16. high impedance state in standby mode This enables you to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise The video application requires 1Vpeak at input and output Calculation of components A decoupling capacitor is provided to cutoff the frequencies below 10Hz according bias Hence Ce 10uF with Ro1 10kQ At the output Cout 220uF The AOPI is in 6dB configuration for the adaptation bridge R1 R2 1kQ V1 2Vpk V2 1Vpk For the PAL communication we need a low pass filtering The load resistance R4 is function of the output resistance of the filter V3 V2 A1 where A1 is the attenuation factor of the filter LPF 1 To compensate the filter insertion loss we add an additional factor to the gain of the 2nd amplifier AOP2 For example for an attenuation of 3dB we choose R5 300Q and R6 1kQ We have V4 2Vpk and Vout 1Vpk The calculation of the parameters R7 C7 R8 C8 R9 R10 will be exactly the same 19 23 Package Mechanical Data TSH80 TSH81 TSH82 6 Package Mechanical Data In order to meet environmental requirements ST offers these devices in ECOPACK packages These packages have a Lead free second level interconnect The category of second level interconnect is marked on the package and on the inner box label in compliance with JEDEC Standard JESD97 The maximum ratings related to soldering conditions are also marked on the inner box label ECOPACK is an ST trademark ECOPACK specifica
17. ive pins Proper termination of all inputs and outputs must be in accordance with output termination resistors then the amplifier load will be only resistive and the stability of the amplifier will be improved All leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance For lower gain application attention should be paid not to use large feedback resistance gt 1kQ to reduce time constant with parasitic capacitances Choose component sizes as small as possible SMD Finally on output the load capacitance must be negligible to maintain good stability You can put a serial resistance the closest to the output pin to minimize its influence Figure 31 CCIR330 video line B G PAL Parameter Diff Gain Step1 0 Re Test Signal CCIR330 1 Window i 103 2 Wi 3 Wi 885 Waveform Select Maximum input level The input level must not exceed the following values Negative peak must be greater than Vcc 400mV Positive peak value must be lower than Vcc 400mV The electrical characteristics show the influence of the load on this parameter 2 TSH80 TSH81 TSH82 Testing Conditions 4 3 2 Video capabilities To characterize the differential phase and differential gain a CCIR330 video line is used The video line contains 5 flat levels of luma on which is superimpos
18. me precautions have to be added specially for low power supply application A feedback capacitance Cf should be added for better stability The table summarizes the impact of the capacitance Cf on the phase margin of the circuit 2 TSH80 TSH81 TSH82 Precautions on Asymmetrical Supply Operation 2 Table 7 Capacitance Cf on the phase margin of the circuit Parameter Cf pF Vcc 1 5V Vcc 2 5V Vcc 5V Unit Phase Margin o 28 43 56 deg f 3dB 40 39 3 38 3 MHz Phase Margin s 30 43 56 deg f 3dB 40 39 3 38 3 MHz Phase Margin gt 37 52 67 deg f 3dB 37 34 32 MHz Phase Margin aa 48 65 78 deg f 3dB 33 7 30 7 27 6 MHz Figure 34 Example of a video application Vec 2 IN Ce Rb AOP1 R3 C3 PAL et _ VI V2 v3 C gRb1 N aore Il gt it AN Ra i ANNI AN LPFI ird R6 Rout Cout OUT ge d we vai ci Vec 2 i ci RL Standby NTSC Vec 2 R7 C7 abt x la IA AN if OP3 R8 LPF2 ni It Vec 2 ROS Ct Standby This example shows a possible application of the TSH8X circuit Here you can multiplex the channels for the different standard PAL NTSC as you filter for the different bands the video signal can be filtered with two different cutoff frequencies corresponding to a PAL encoded signal LPF1 or a NTSC signal LPF2 You can multiplex input signals as the outputs are in
19. put VCC Video buffers Inverting Input1 Output2 Non Inverting Inputi Inverting Input2 M A D converters driver VCC Non Inverting Input2 m Hi Fi applications Rev 2 August 2005 1 23 www st com TSH80 TSH81 TSH82 Order Codes Type Temperature Range Package Packaging Marking TSH80ILT SOT23 5 K303 Tape amp Reel TSH80IYLT 40 C to 85 C SOT23 5 automotive grade level K310 TSH80ID DT SO 8 TSH801 TSH80IYD IYDT 40 C to 125 C SO 8 automotive grade level Tube or Tape amp Reel SH801IY TSH81ID DT SO 8 TSH81I TSH81IPT TSSOP8 Tape amp Reel SH811 40 C to 85 C TSH82ID DT SO 8 Tube or Tape amp Reel TSH821 TSH82IPT TSSOP8 Tape amp Reel SH82lI TSH82IYD ITDT 40 C to 125 C SO 8 automotive grade level Tube or Tape amp Reel SH82IY 2 23 ky TSH80 TSH81 TSH82 Absolute Maximum Ratings 2 Absolute Maximum Ratings Table 1 Key parameters and their absolute maximum ratings Symbol Parameter Value Unit Vcc Supply Voltage 14 Vv Via Differential Input Voltage 2 v Vi Input Voltage 9 6 v Toper Operating Free Air Temperature Range 40 to 85 C Tstg Storage Temperature 65 to 150 C Tj Maximum Junction Temperature 150 C Thermal resistance junction to case 4 Ri SOT23 5 a C W thjc SO8 28 TSSOPO8 37 Thermal resistance junc
20. tion to ambient area Rinja SOT23 5 590 SO8 157 C W TSSOPO8 130 ESD Human Body Model 2 kV 1 All voltage values except differential voltage are with respect to network ground terminal 2 Differential voltages are non inverting input terminal with respect to the inverting terminal 3 The magnitude of input and output must never exceed Vcc 0 3V 4 Short circuits can cause excessive heating Table 2 Operating conditions Symbol Parameter Value Unit Voc Supply Voltage 4 5 to 12 V Vic Common Mode Input Voltage Range Voc to Vec 1 1 V Standby Vcc to Vect V 3 23 Electrical Characteristics TSH80 TSH81 TSH82 2 Electrical Characteristics Table 3 Vect 5V Vec GND Vic 2 5V Tamb 25 C unless otherwise specified Symbol Parameter Test Condition Min Typ Max Unit Tamb 25 C 1 1 10 Vol Input Offset Voltage mV O pu T min lt Tamb lt Tmax 12 Input Offset Voltage Drift vs 4 AVio Liu 9 T min lt Tamb lt Tmax 3 LV C Tamb 25 C 0 1 35 Input Offset Current a A a T min lt Tamb lt Tmax 5 di Tamb 25 C 6 15 lj Input Bias Current am A ka Tmin lt Tamb lt Tmax 20 j Cin Input Capacitance 0 3 pF Tamb 25 C 8 2 10 5 Supply Current per Operator am mA bi a p P Tmin lt Tamb lt Tmax 11 5 0 1 lt Vic lt 3 9V amp Common Mode Rejection Ratio Vout 2 5V CMR SVic amp Vio Tamb 25 C Tmin lt Tamb lt Tmax gyp Supply Volta
21. tions are available at www st com 6 1 SO 8 Package SO 8 MECHANICAL DATA mm inch DIM MIN TYP MAX MIN TYP MAX A 1 35 1 75 0 053 0 069 Al 0 10 0 25 0 04 0 010 A2 1 10 1 65 0 043 0 065 B 0 33 0 51 0 013 0 020 C 0 19 0 25 0 007 0 010 D 4 80 5 00 0 189 0 197 E 3 80 4 00 0 150 0 157 e 1 27 0 050 H 5 80 6 20 0 228 0 244 h 0 25 0 50 0 010 0 020 L 0 40 1 27 0 016 0 050 k 8 max ddd 0 1 0 04 D hx45 DI A2 i la v uni B AI C A ddd C SEATING PLANE 0 25 mm T GAGE PLANE 8 5 E H fl 4 e 0016023 C 2 20 23 TSH80 TSH81 TSH82 Package Mechanical Data 6 2 lt TSSOP8 Package TSSOP8 MECHANICAL DATA PIN_1 IDENTIFICATION mm inch DIM MIN TYP MAX MIN TYP MAX A 1 2 0 047 A1 0 05 0 15 0 002 0 006 A2 0 80 1 00 1 05 0 031 0 039 0 041 b 0 19 0 30 0 007 0 012 C 0 09 0 20 0 004 0 008 D 2 90 3 00 3 10 0 114 0 118 0 122 E 6 20 6 40 6 60 0 244 0 252 0 260 E1 4 30 4 40 4 50 0 169 0 173 0 177 e 0 65 0
22. trical Characteristics Table 5 Standby mode Vec Vec Tamb 25 C unless otherwise specified Symbol Parameter Test Condition Min Typ Max Unit Vlow Standby Low Level Vcc Vcc 0 8 V Vhign Standby High Level Vec 2 Vech V Current Consumption per lcc sgy Operator when STANDBY is pin 8 TSH81 to Voc 20 55 HA Active Z Output Impedance Rout Rout 10 MQ out Cout Con 17 pF T Time from Standby Mode to 2 5 on Active Mode T Time from Active Mode to Down to lcc spy 10 a off Standby Mode 101A i TSH81 STANDBY CONTROL pin 8 SBY OPERATOR STATUS Viow Standby Vhigh Active lt 9 23 Electrical Characteristics TSH80 TSH81 TSH82 Figure 1 Closed loop gain amp phase vs frequency Gain 2 Vcc 2 5V R 1500 Tamb 25C Figure 2 Overshoot function of output capacitance Gain 2 Vcc 2 5V Tamp 25 C 10 200 5 Gain 100 a lt Oo o 0 S Oo al O 5 o Phase 100 10 45 200 1E 4 1E 5 1E 6 1E 7 1E 8 1E 9 Frequency Hz 1E 6 1E 7 1E 8 1E 9 Frequency Hz Figure 3 Closed loop gain amp phase vs frequency Gain 10 Vec

Download Pdf Manuals

image

Related Search

STMICROELECTRONICS TSH80 TSH81 TSH82 Manual

Related Contents

                    

Copyright © All rights reserved.
DMCA: DMCA_mwitty#outlook.com.