Home

MAXIM MAX2045/MAX2046/MAX2047 Manual

image

Contents

1. 145 0 a 1450 g 9 0 z k 44 5 B z 145 5 AN 55 i ds i 146 0 1460 E 2 8 0 146 5 146 5 amp 147 0 147 0 78 o S amp 1475 amp 147 5 70 psu N n a 148 0 2 148 0 5 amp 65 gt 148 5 gt 1485 feed 5 5 6 0 3 149 0 3 149 0 149 5 149 5 5 5 150 0 150 0 50 250 275 3 00 325 3 50 3 75 4 00 250 275 300 325 350 375 4 00 700 750 800 850 900 950 1000 1050 1100 CONTROL VOLTAGE V11 VQ1 V CONTROL VOLTAGE V11 VQ1 V FREQUENCY MHz INPUT P1 dB COMPRESSION INPUT P1 dB COMPRESSION INPUT P1 dB COMPRESSION vs FREQUENCY vs CONTROL VOLTAGE VI1 VQ1 vs CONTROL VOLTAGE VI1 VQ1 10 0 g 9 0 3 s 95 5 85 9 0 80 m 85 7 Voc 5 0V 75 TA 85 C amp amp 80 Vec 5 25V amp c um 5 70 gt M Ta 425 C 5 5 65 gt 60 60 55 55 50 TA 40 C 5 0 Veg 4 75V 45 45 40 4 0 700 750 800 850 900 950 1000 1050 1100 250 275 300 325 350 375 4 00 250 275 300 325 350 375 4 00 FREQUENCY MHz CONTROL VOLTAGE VII VQ1 V CONTROL VOLTAGE VI1 VQ1 V IIP3 vs FREQUENCY IIP3 vs FREQUENCY IIP3 vs CONTROL VOLTAGE VI1 VQ1 19 0 5 18 5 19 V_1 3 2V 8 V 1 32V 18 8 18 5 E 180 E Ve 5 25V 8 18 0 E 17 175 16 175 Vec 5 25V Ta 40 C 15 17 0 2s Vee 4 75V 17 0 g amp Veo 50V
2. vs TEMPERATURE AND SUPPLY VOLTAGE INPUT RETURN LOSS vs FREQUENCY OUTPUT RETURN LOSS vs FREQUENCY 230 MAX2045 toc01 2 52 10 m 2 REFOUT LOADED WITH V_2 3 E zd S oues z p n g n sou 16 5 15 17 3 E m 2 Eom 16 8 E 2 zd cQ 18 20 19 2i 20 22 2000 2050 2100 2150 2200 2250 2300 2000 2050 2100 2150 2200 2250 2300 TEMPERATURE C FREQUENCY MHz FREQUENCY MHz GAIN vs FREQUENCY GAIN vs FREQUENCY GAIN vs CONTROL VOLTAGE VI1 VQ1 20 15 15 E V 1 35V 8 E E 15 V 1 30V4 E 10 E 10 3 E 10 5 5 5 V1 2 75V 0 0 0 V 1 2 625V 5 s 4 amp 3 10 3 10 c5 10 c5 Oo 15 15 15 0 20 20 25 LV 1 255V 30 30 30 2000 2050 2100 2150 2200 2250 2300 2000 2050 2100 2150 2200 2250 2300 250 275 300 325 350 375 400 FREQUENCY MHz FREQUENCY MHz CONTROL VOLTAGE VI1 VQ1 V GAIN vs CONTROL VOLTAGE VI1 VQ1 REVERSE ISOLATION vs FREQUENCY OUTPUT NOISE POWER vs FREQUENCY D 3 MERET g m E 5 50 145 0 0 Ad 5 Ta 25 C__ 60 5 5 S 10 S 146 Ta 48520 em ET 15 E amp 146 5 5 S 80 e 20 o 447 25 mo 90 a 30 75 35 100 3 ug 40 45 110 148 5 50 120 149 0 250 275 300 325 350 375 400 2000 2050 2100 2150 2200 2250 2300 2000 2050 2100 2150 2200 2250 2300 CONTROL VOLTAGE Vit VQ1 V FREQUENCY MHz FREQUENCY MHz
3. IIP3 vs CONTROL VOLTAGE VI1 VQ1 GAIN vs PHASE 21 PHASE vs FREQUENCY 19 a 10 E 86 0 a RADIUS RADIUS 0 8 5 3 as MASAN E B f ONE ELECTRICAL DELAY 17 2 8 E 850 F REMOVED AT 5V 16 4 845 15 2 aaa Voc 5 25V 84 0 ae a 835 E ea E b 2 RADIUS 0 75 E Dido eo 4 7 b 1 5 mibuszos RADIUS 0 625 2 us 10 F x gop Vcc 5 V 10 RADIUS 0 375 815 Voc 4 75V ai 81 0 7 i4 REDUS 0 25 as 6 7 RADIUS 0 125 5 16 80 0 250 275 300 325 350 375 400 0 45 90 135 180 225 270 315 360 2000 2050 2100 2150 2200 2250 2300 CONTROL VOLTAGE VI1 VQ1 V PHASE DEGREES FREQUENCY MHz 21 PHASE vs FREQUENCY 21 PHASE vs FREQUENCY 21 PHASE vs FREQUENCY 80 0 5 90 3 795 V 1 265V 3 V 1232V V_1 2 65V E gt ONE ELECTRICAL DELAY El ONE ELECTRICAL DELAY z ONE ELECTRICAL DELAY E 79 0 FREMOVED AT 5V Voc 5 25V E REMOVED AT 25 C 3 85 REMOVED AT 25 C E 785 a 78 0 g a 80 gS S z a mo 2 Q 75 LU LLI LLI 2 765 B 2 I I T 760 Vec 5V a 70 75 5 Vec 4 75V 75 0 65 745 740 60 2000 2050 2100 2150 2200 2250 2300 2000 2050 2100 2150 2200 2250 2300 2000 2050 2100 2150 2200 2250 2300 FREQUENCY MHz FREQUENCY MHz FREQUENCY MHz GROUP DELAY vs FREQUENCY SWITCHING SPEED 90 8 g 85 V 1 2 55V 103 E 2 SEE SWITCHING SPEED SECTION IN THE 3 80 8 APPLICATIONS INFORMATION 3 15 3 2 70 1 65 160 gt 1 55 as 150 ES Ci 14
4. 8 AVLAZCLAVI High Gain Vector Multipliers Typical Operating Characteristics MAX2045 continued Vcc 5V fin 2140MHz V 1 VI1 and VQ1 V_2 VI2 and VQ2 1 1 II and IQ1 1 2 II2 and IQ2 VI1 VQ1 3 2V VI2 VQ2 REFOUT Pin 15dBm per tone at 1MHz offset IIP3 and TA 25 C unless otherwise noted OUTPUT NOISE POWER vs CONTROL VOLTAGE VI1 VQ1 OUTPUT NOISE POWER vs CONTROL VOLTAGE VI1 VQ1 INPUT P1 dB COMPRESSION vs FREQUENCY 144 0 5 E 90 B E V 1 32V E 144 5 2 E e 1450 TA 85 C 2 2 El E zu 4455 80 Voc 5 25V 1460 E 75 Voc 50V Es S m 146 5 TA 40 C m x 70 S 147 0 S 5 z 65 1475 3 148 0 8 a Ve 4 75V 148 5 9 9 MN Ta 425 C 149 0 5 0 250 275 3 00 325 3 50 3 75 4 00 250 2 75 300 325 350 375 4 00 2000 2050 2100 2150 2200 2250 2300 CONTROL VOLTAGE VI1 VQ1 V CONTROL VOLTAGE VI1 VQ1 V FREQUENCY MHz INPUT P1 dB COMPRESSION INPUT P1 dB COMPRESSION INPUT P1 dB COMPRESSION vs FREQUENCY vs CONTROL VOLTAGE VI1 VQ1 vs CONTROL VOLTAGE VI1 VQ1 9 0 2 16 z 16 BE E 15 15 5 gi 14 Vee 5 25V 14 a _ 18 _ 18 E E 75 12 12 T S 1 11 amp 40 a 40
5. The package drawing s in this data sheet may not reflect the most current specifications For the latest package outline information go to www maxim ic com packages ART L pe X PIN 1 AEE SJo10 fcTATs QFN THIN EPS PIN 11 D 0 35x45 A d ioc l E NE 1 KE y 1 1 A DETAIL A BOTTOM VIEW R IS OPTIONAL m L I oN mame mr EVEN TERMINAL ODD TERMINAL AVV AXI ZVI PROPRIETARY INFORMATION PACKAGE OUTLINE 16 20 28 32L QFN THIN 5x5x0 8 mm APPROVAL DOCUMENT CONTROL NO REV 1 21 0140 c COMMON DIMENSIONS EXPOSED PAD VARIATIONS PKG SYMBOL alo Lon o Tage om fs os toost o ose oss metes tatoa oa al eataa oe aa 0 25 030 Ka 5 10 mE 4 90 5 0 30 0 0 5 00 4 90 5 00 5 10 4 90 5 00 E d E 4 90 5 00 5 10 0 80 BSC TR 0 50 BSC 025 0 25 0 25 0 25 045 0 55 0 65 0 30 m 0 50 16 4 WHHB WHHC WHHD 1 WHHD 2 NOTES 1 DIMENSIONING amp TOLERANCING CONFORM TO ASME Y14 5M 1994 2 ALL DIMENSIONS ARE IN MILLIMETERS ANGLES ARE IN DEGREES 3 NIS THE TOTAL NUMBER OF TERMINALS THE TERMINAL 1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95 1 SPP 012 DETAILS OF TERMINAL 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED THE TERMINAL 1 IDENTIFIER MAY BE EITHER A
6. 280Q fin 915MHZz input cur rent range 0 to 4mA if using a current mode DAC and differential input voltage range O to 0 707V if using a voltage mode DAC If using a current mode DAC voltage mode Q inputs are left open If using a voltage mode DAC all current mode I Q inputs are left open Typical values are at Vcc 5V and Ta 25 C unless otherwise noted Notes 1 2 3 PARAMETER CONDITIONS VI VQ 0 707V radius 1V VI VQ O 5V radius 0 707V Output Noise Power dBm Hz VI VQ 0 25V radius 0 35V VI VQ 0 125V radius 0 175V VI VQ 0 707V radius 1V VI VQ 0 125V radius 0 175V VI VQ 0 707V radius 1V VI VQ 0 125V radius 0 175V CURRENT MODE WA IQ1 4mA II2 IQ2 OmA WA IQ1 1mA II2 IQ2 OmA Difference in gain between II1 IQ1 4mA II2 IQ2 OmA and IQ1 1mA II2 IQ2 OmA GSM fin 942 5MHz 62 5MHz US cell fin 881 5MHz Power Gain Note 4 Power Gain Range II1 1Q1 4mA 62 5MHz Gain Flatness Over Frequency Il2 IQ OmA pum SEU HN z 60MHz KDI JDC PDC fin 820MHz 30MHz GSM fiy 942 5MHz 62 5MHz US cell fin 881 5MHz Electrical delay removed 62 5MHz Phase Flatness Over Frequency 1 1Q1 4mA Degrees 112 IQ2 OmA JCDMA fin 850MHz 60MHz KDI JDC PDC fin 820MHz X30MHz Note 1 Guaranteed by design and characterizati
7. Pow Pow er Gain er Gain Range VI VQ 0 707V radius 1V VI VQ 0 5V radius 0 707V VI VQ 0 25V radius 0 35V VI VQ 0 125V radius 0 175V Difference in gain between VI VQ 0 707V and VI VQ 0 125V Reverse Isolation Over entire control range ax Con ax Red imum Power Gain for inuous Coverage of Phase Change imum Power Gain with uced Phase Coverage O to 360 radius 1V 0 to 360 radius 1V Group Delay VI VQ 0 707V radius 1V Gain Drift Over Temperature VI VQ 0 707V radius 1V Gain Flatness Over Frequency PCS fin 1960MHz VI VQ 2 0 707V 100MHz radius 1V DCS fin 1842 5MHz 100MHz MAAKIM High Gain Vector Multipliers MAX2046 ELECTRICAL CHARACTERISTICS continued Typical Operating Circuit as shown in Figure 1 Vcc 4 75V to 5 25V Ta 40 C to 85 C Rgias 280Q fin 1 9GHz input cur rent range O to 4mA if using a current mode DAC and differential input voltage range O to 0 707V if using a voltage mode DAC If using a current mode DAC voltage mode Q inputs are left open If using a voltage mode DAC all current mode I Q inputs are left open Typical values are at Vcc 5V and Ta 25 C unless otherwise noted Notes 1 2 3 PARAMETER CONDITIONS PCS fin 1960MHz ectrical delay removed 100MHz VQ 0 707V radius 1V DCS fin 1842 5MHz
8. open Typical values are at Vcc 5V and Ta 25 C unless otherwise noted Notes 1 2 3 PARAMETER CONDITIONS Frequency Range RF Input Return Loss RF Output Return Loss VOLTAGE MODE VI VQ 0 707V radius 1V VI VQ 0 5V radius 0 707V VI VQ 0 25V radius 0 35V VI VQ 0 125V radius 0 175V Difference in gain between VI VQ 0 707V and VI VQ 0 125V Reverse Isolation Over entire control range Power Gain Power Gain Range aximum Power Gain for Continuous Coverage of Phase O to 360 radius 1V Change aximum Power Gain with Reduced Phase Coverage Group Delay VI VQ 0 707V radius 1V O to 360 radius 1V Gain Drift Over Temperature VI VQ 0 707V radius 1V GSM fin 942 5MHz 62 5MHz US cell fin 881 5MHz VI VQ 0 707V x62 5MHz radius 1V JCDMA fin 850MHz 60MHz KDI JDC PDC fin 2 820MHz 30MHz GSM fin 942 5MHz 62 5MHz US cell fin 881 5MHz Electrical delay removed 69 5Hz Phase Flatness Over Frequency VI VQ 0 707V radius Degrees 1V JCDMA fin 850MHz 60MHz KDI JDC PDC fin 820MHz 30MHz Gain Flatness Over Frequency 6 MAXIM High Gain Vector Multipliers MAX2047 ELECTRICAL CHARACTERISTICS continued Typical Operating Circuit as shown in Figure 1 Vcc 4 75V to 5 25V Ta 40 C to 85 C RBiAS
9. 10 5 V_1 2 75V 5 5 EN S o g z 0 z 5 3 5 5 5 5 10 E 15 10 10 20 15 V 1 2 625V 15 V_1 255V 20 20 30 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 250 275 300 325 350 375 4 00 FREQUENCY MHz FREQUENCY MHz CONTROL VOLTAGE V11 VQ1 V GAIN vs CONTROL VOLTAGE VI1 VQ1 REVERSE ISOLATION vs FREQUENCY OUTPUT NOISE POWER vs FREQUENCY 20 g 144 i 5 145 z 39 3 5 amp 146 0 cc S 5 a ce a a Ee uu 10 5 148 15 2 lt 20 149 E bi 150 30 35 151 250 275 300 325 350 375 4 00 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 CONTROL VOLTAGE VI1 VQ1 V FREQUENCY MHz FREQUENCY MHz 14 MAXIM High Gain Vector Multipliers Typical Operating Characteristics MAX2047 continued Vcc 5V fin 915MHz V 1 VI1 and VQ1 V 2 VI2 and VQ2 I_1 II1 and IQ1 1 22 II2 and IQ2 VI1 VQ1 3 2V VI2 VQ2 REFOUT Pin 15dBm per tone at 1MHz offset IIP3 and TA 25 C unless otherwise noted OUTPUT NOISE POWER vs CONTROL VOLTAGE VI1 VQ1 OUTPUT NOISE POWER vs CONTROL VOLTAGE VI1 VQ1 INPUT P1 dB COMPRESSION vs FREQUENCY
10. 100MHz Phase Flatness Over Frequency Degrees VQ 0 707V radius 1V VQ 0 5V radius 0 707V VQ 0 25V radius 0 35V VQ 0 125V radius 0 175V VQ 0 707V radius 1V VQ 0 125V radius 0 175V Output Noise Power dBm Hz IP1dB VQ 0 707V radius 1V VQ 0 125V radius 0 175V IIP3 V V V V V V V V CURRENT MODE I1 IQ1 4mA II2 IQ2 OMA I1 IQ1 1mA Il2 IQ2 OMA Difference in gain between II1 IQ1 4mA II2 IQ2 OmA and II1 IQ1 1mA II2 IQ2 OmA PCS fin 1960MHz Il 1Q1 4mA l2 1Q2 100MHz Oma CS fin 1842 5MHz Hz N 1960MHz Electrical delay removed Hz Phase Flatness Over Frequency I1 1Q1 4mA Degrees 112 IQ2 OMA fin 1842 5MHz Hz Power Gain Note 4 Power Gain Range Gain Flatness Over Frequency MAXIM 5 ZPFOCXVW 9rocxvW SPrOc XVIW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers MAX2047 ELECTRICAL CHARACTERISTICS Typical Operating Circuit as shown in Figure 1 Vcc 4 75V to 5 25V Ta 40 C to 85 C Reias 280Q fin 915MHZz input cur rent range O to 4mA if using a current mode DAC and differential input voltage range O to 0 707V if using a voltage mode DAC If using a current mode DAC voltage mode Q inputs are left open If using a voltage mode DAC all current mode I Q inputs are left
11. 165 165 1 a A a 160 i 16 0 FT 25 C 11 15 5 i 150 Vec 4 75V Tes Vec 5 0V 15 0 145 mim 8 140 145 7 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 250 275 300 325 350 375 400 FREQUENCY MHz FREQUENCY MHz CONTROL VOLTAGE VI1 VQ1 V MAKII 15 ZPrOCXVW 9rocxvW SrOc XVIW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers Typical Operating Characteristics MAX2047 continued Voc 5V fin 915MHz V 1 VI1 and VQ1 V 2 VI2 and VQ2 I_1 II1 and IQ1 1 22 II2 and IQ2 VI1 VQ1 3 2V VI2 VQ2 REFOUT Pin 15dBm per tone at 1MHz offset IIP3 and TA 25 C unless otherwise noted IIP3 vs CONTROL VOLTAGE VI1 VQ1 GAIN vs PHASE 21 PHASE vs FREQUENCY 5 RADIUS 0 875 V 1 32V E 19 8 8 ONE ELECTRICAL DELAY E M 3 REMOVED AT 5V 3 17 amp 1 44 E ada 5 12 11 10 9 8 7 250 275 300 325 350 375 400 0 45 90 135 180 225 270 315 360 700 750 800 850 900 950 1000 1050 1100 CONTROL VOLTAGE V11 VQ1 V PHASE DEGREES FREQUENCY MHz 21 PHASE
12. 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 TEMPERATURE C FREQUENCY MHz FREQUENCY MHz GAIN vs FREQUENCY GAIN vs FREQUENCY GAIN vs CONTROL VOLTAGE VI1 VQ1 20 15 5 20 V_1 3 5V E 8 15 V1230V E 10 E 15 10 N E 5 10 5 V_1 2 75V 5 g0 V_1 2 625V g 0 5 10 5 40 40 15 i B 20 20 20 25 E 25 I V 1 255V 29 30 30 30 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 250 275 3 00 325 350 3 75 FREQUENCY MHz FREQUENCY MHz CONTROL VOLTAGE VII VQ1 V GAIN vs CONTROL VOLTAGE VI1 VQ1 REVERSE ISOLATION vs FREQUENCY OUTPUT NOISE POWER vs FREQUENCY 30 E 144 0 8 V_1 2 55V TO 3 5V 3 g 40 s 144 5 E i Sue V 12835V AK A 50 60 145 5 E 146 0 146 ew QUT v1 2 625v 1465 g e i B 4470 i 1475 100 gt 148 0 i E VIEW T y 1 2sy 110 148 5 120 149 0 250 275 300 325 350 375 4 00 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 CONTROL VOLTAGE VI1 VQ1 V FREQUENCY MHz FREQUENCY MHz AVLAX LA 11 ZPFOCXVW 9rocxvW SrOcXVIMW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers Typical Operating Characteristics MAX2046 continued Vcc 5V fin 1900MHz V_1 VI1 and VQ1 V 2 VI2 and VQ2 1 1 II1 and IQ1 1 2 II2 and IQ2 VI1 VQ1 32V VI2 VQ2 REFOUT Pin 15dBm per tone at 1MHz offset IIP3 and Ta 25 C
13. 250 275 3 00 325 350 375 4 00 FREQUENCY MHz CONTROL VOLTAGE VI1 VQ1 V CONTROL VOLTAGE V11 VQ1 V IIP3 vs FREQUENCY IIP3 vs FREQUENCY IIP3 vs CONTROL VOLTAGE VI1 VQ1 17 0 9 g 19 3 V 1 32V E 2 18 s 185 E E 17 E 16 0 i Vec 5 25V 15 5 zo amp amp amp 13 RJ E D 15 0 12 14 5 10 Voc 4 75V 440 ce Vcc 5 0V s 13 5 T 6 13 0 5 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 250 275 3 00 325 350 375 400 FREQUENCY MHz FREQUENCY MHz CONTROL VOLTAGE V11 VQ V 12 AVLAZCLAVI High Gain Vector Multipliers Typical Operating Characteristics MAX2046 continued Vcc 5V fin 1900MHz V 1 VI1 and VQ1 V 2 VI2 and VQ2 1 1 II1 and IQ1 1 2 II2 and IQ2 VI1 VQ1 32V VI2 VQ2 REFOUT Pin 15dBm per tone at 1MHz offset IIP3 and TA 25 C unless otherwise noted IIP3 vs CONTROL VOLTAGE VI1 VQ1 GAIN vs PHAS
14. 5 55 e 140 2 135 5 130 25 20 E 45 10 05 00 2000 2050 2100 2150 2200 2250 2300 SWITCHING SPEED 1ns div FREQUENCY MHz 10 MAXIM REFOUT AND SUPPLY CURRENT vs TEMPERATURE AND SUPPLY VOLTAGE MAX2046 toc27 High Gain Vector Multipliers Typical Operating Characteristics MAX2046 Vcc 5V fin 1900MHz V 1 VI1 and VQ1 V 2 VI2 and VQ2 1 1 II1 and IQ1 1 2 II2 and IQ2 VI1 VQ1 3 2V VI2 VQ2 REFOUT Pin 15dBm per tone at 1MHz offset IIP3 and TA 25 C unless otherwise noted INPUT RETURN LOSS vs FREQUENCY OUTPUT RETURN LOSS vs FREQUENCY MAX2046 loc29 MAX2046 toc32 4 00 MAX2046 toc35 2 52 10 2 12 REFOUT LOADED WITH V 2 3 V_1 2 55V TO 35V 210 251 12 E 13 E 14 200 250 S d S n a 1 190 249 B S 46 dB 5 180 Vec 5 25V 248423 amp S47 Vec 5 0V Exi ran 18 e c 18 amp 170 L Voc 475V 241 5 a 20 19 60 246 8 20 2 45 2 SUPPLY CURRENT 40 244 24 22 40 15 10 35 60 85 1700 1750 1800 1850 1900
15. 65 gt gt Ta 85 C 2 9 Vcc 5 0V z 8 och 8 Ta 25 C 7 7 Vec 4 75V a cs 6 a 5 0 5 5 2000 2050 2100 2150 2200 2250 2300 250 275 300 325 350 375 400 250 275 300 325 350 375 4 00 FREQUENCY MHz IIP3 vs FREQUENCY IIP3 dBm 2000 MAX2045 toc16 IIP3 dBm CONTROL VOLTAGE VI1 VQ1 V IIP3 vs FREQUENCY MAX2045 toc17 2050 2100 2150 2200 2250 2300 2000 2050 2100 2150 2200 2250 2300 250 275 300 325 350 375 4 00 FREQUENCY MHz FREQUENCY MHz CONTROL VOLTAGE VI1 VQ1 V MAXAXLAVI 9 IIP3 dBm CONTROL VOLTAGE V11 VQ1 V IIP3 vs CONTROL VOLTAGE VI1 VQ1 MAX2045 toc18 ZPFOCXVW 9rocxvW SrOcXVIMW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers Typical Operating Characteristics MAX2045 continued Vcc 5V fin 2140MHz V 1 VI1 and VQ1 V_2 VI2 and VQ2 1 1 II and IQ1 1 2 II2 and IQ2 VI1 VQ1 3 2V VI2 VQ2 REFOUT Pin 15dBm per tone at 1MHz offset IIP3 and Ta 25 C unless otherwise noted
16. DABS RAB Masi ARAM MMAR 19 2728 Rev 0 1 03 AVLAZX LA High Gain Vector Multipliers General Description The MAX2045 MAX2046 MAX2047 low cost fully inte grated vector multipliers alter the magnitude and phase of an RF signal Each device is optimized for the UMTS MAX2045 DCS PCS MAX2046 or cellular GSM MAX2047 frequency bands These devices feature differential RF inputs and outputs The MAX2045 MAX2046 MAX2047 provide vector adjustment through the differential I Q amplifiers The Q amplifiers can interface with voltage and or current digital to analog converters DACs The voltage inputs are designed to interface to a voltage mode DAC while the current inputs are designed to interface to a current mode DAC An internal 2 5V reference voltage is provid ed for applications using single ended voltage DACs The MAX2045 MAX2046 MAX2047 operate from a 4 75V to 5 25V single supply All devices are offered in a com pact 5mm x 5mm 32 lead thin QFN exposed paddle packages The MAX2045 MAX2046 MAX2047 evaluation kits are available contact factory for availability Applications UMTS PCS DCS Cellular GSM Base Station Feed Forward and Predistortion Power Amplifiers RF Magnitude and Phase Adjustment RF Cancellation Loops Beam Forming Applications Ordering Information TEMP RANGE 40 C to 85 C 40 C to 85 C 40 C to 85 C PIN PACKAGE 32 Thin QFN EP 32 Th
17. E 21 PHASE vs FREQUENCY g 10 is E a RADIUS 1 RADIUS 0 875 E V 1 32V E s B S ONE ELECTRICAL DELAY s REMOVED AT 5V E 2 a a 9 gt RADIUS 0 75 g 4 RADIUS 0 625 in e RADIUS 0 5 2 8 RADIUS 0 375 10 7 12 FRADIUS 0 25 in RADIUS 0 125 250 275 300 325 350 375 4 00 0 45 90 135 180 225 270 315 360 1700 1750 1800 1850 1900 1950 2000 2050 2100 CONTROL VOLTAGE VI1 VQ1 V PHASE DEGREES FREQUENCY MHz 21 PHASE vs FREQUENCY 21 PHASE vs FREQUENCY 21 PHASE vs FREQUENCY 3 130 2 130 8 V 12 2 65V 3 435 VAN E 435 A 2 65V 8 ONE ELECTRICAL DELAY E 7 ONE ELECTRICAL DELAY E ji ONE ELECTRICAL DELAY s REMOVED AT 5V 2 140 F REMOVED AT 25 C 3 140 F REMOVED AT 25 C 3 _ 145 a 4020 _ 145 150 150 Ta 40 C es 199 S 155 460 160 TA 25 C 2 165 Pa 2 165 170 170 n 425 C 175 175 180 Ta 85 C 180 A 85 C 185 185 190 190 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY MHz FREQUENCY MHz FREQUENCY MHz GROUP DELAY vs FREQUENCY SWITCHING SPEED 90 2 as V 1 2 55V TO 35V 8 SEE SWITCHING SPEED SECTION IN TH E APPLICATIONS INFORMATION 8 80 8 S 75 z a 70 oLV i a 160 ao 2 155 ec 5 150 45 E 40 35 30 1700 1750 1800 1850 1900 1950 2000 2050 2100 SWITCHING SPEED 1ns div FREQUENCY MHz AVLAX LA 13 ZPFOCXVW 9rocxvW SrOc
18. MOLD OR MARKED FEATURE AX DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0 25 mm AND 0 30 mm FROM TERMINAL TIP A ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY 7 DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION A COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS WA VI A X VI 9 DRAWING CONFORMS TO JEDEC MO220 MM 10 WARPAGE SHALL NOT EXCEED 010mm 16 20 28 32L QFN THIN 5x5x0 8 mm DOCUMENT CONTROL NO 21 0140 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product No circuit patent licenses are implied Maxim reserves the right to change the circuitry and specifications without notice at any time Maxim Integrated Products 120 San Gabriel Drive Sunnyvale CA 94086 408 737 7600 21 2003 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products ZPFOCXVW 9rocxvW SrOc XVIMW This datasheet has been download from www datasheetcatalog com Datasheets for electronics components
19. RENT MODE DAC AMPLIFIER NTROL MAXIM MAX2045 MAX2046 MAX2047 co REFOUT 9 C14 Mad n AMP NTROL LIFIER Q 5V RENC 90 PHASE SHIFTER pu VECTOR ULTIPLIER i RFOUTI aan DESIGNATION DESCRIPTION MAX2045 MAX2046 MAX2047 C1 3 3pF 220pF 3 3pF 220pF 4TpF 22pF 22pF 0 01uF 0 01uF L2 1 6pF CAP 10nH 1 6pF CAP 10nH 39nH R1 280Q 280Q 280Q TI 1 1 balun 1 1 balun 1 1 balun T2 4 1 balun 4 1 balun 4 1 balun POPULATED WITH AN INDUCTOR OR CAPACITOR DEPENDING ON THE VERSION Figure 1 Typical Operating Circuit Using Differential Current and Voltage Mode DACs 18 MAXIM High Gain Vector Multipliers C1 RF noy VOLTAGE MODE DAC CONTROL 90 AMPLIFIER PHASE MAXIM SHIFTER MAX2045 MAX2046 MAX2047 VECTO CONTROL ULTIPLI AMPLIFIER Q 2 5V REFERENCE DESCRIPTION MAX2045 MAX2046 MAX2047 C1 3 3pF 3 3pF 47pF C2 C3 220pF 220pF 47pF C4 C6 C12 C16 22pF 22pF 47pF C17 0 01 uF 0 01 pF 0 01 uF 11 1 6pF CAP 1 6pF CAP 15nH L2 10nH 10nH 39nH R1 2800 2800 28002 Ti 1 1 balun 1 1 balun 1 1 balun T2 4 1 balun 4 1 balun 4 1 b
20. RF Output Return Loss VOLTAGE MODE Power Gain VI VQ 0 707V radius 1V VI VQ 0 5V radius 0 707V VI VQ 0 25V radius 0 35V VI VQ 0 125V radius 0 175V Power Gain Range Reverse Isolation Maximum Power Gain for Continuous Coverage of Phase Change Difference in gain between VI VQ 0 707V and VI VQ 0 125V Over entire control range O to 360 radius 1V Maximum Power Gain with Reduced Phase Coverage 0 to 360 radius 1V Group Delay VI VQ 0 707V radius 1V Gain Drift Over Temperature Gain Flatness Over Frequency VI VQ 0 707V radius 1V VI VQ 0 707V radius 1V UMTS fIN 2140MHz 100MHz Phase Flatness Over Frequency Electrical delay removed VI VQ 0 707V radius 1V UMTS fin 2140MHz 100MHz Output Noise Power VI VQ 0 707V radius 1V VI VQ 0 5V radius 0 707V VI VQ 0 25V radius 0 35V VI VQ 0 125V radius 0 175V dBm Hz VI VQ 0 707V radius 1V VI VQ 0 125V radius 0 175V MAXIM VI VQ 0 707V radius 1V VI VQ 0 125V radius 0 175V ZPFOCXVW 9rocxvW SPrOc XVIW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers MAX2045 ELECTRICAL CHARACTERISTICS continued Typical Operating Circuit as shown in Figure 1 Vcc 4 75V to 5 25V Ta 40 C to 85 C Reias 28002 fin 2 14GHz input cur rent ran
21. XVIW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers Typical Operating Characteristics MAX2047 Vcc 5V fin 915MHz V 1 VI1 and VQ1 V_2 VI2 and VQ2 I_1 Il1 and IQ1 1 2 Il2 and IQ2 VI1 VQ1 3 2V VI2 VQ2 R REFOUT AND SUPPLY CURRENT vs TEMPERATURE AND SUPPLY VOLTAGE INPUT RETURN LOSS vs FREQUENCY EFOUT Pin 15dBm per tone at 1MHz offset IIP3 and TA 25 C unless otherwise noted OUTPUT RETURN LOSS vs FREQUENCY 21 MAX2047 toc53 252 1 0 7 m REFOUT LOADED WITH V_2 D 8 V_1 2 55V TO 35V E 8 9 E 200 E 2 51 i TN 2 190 4 los 16 1 80 2 49 3 2 z Voc 5 25V Z a S 1 2 47 Vec 5 0V 248 i 2 Voc 4 75V 24 t 18 gt D 160 247 9 5 o 14 50 2 46 e 15 SUPPLY CURREN 30 40 2 45 32 16 40 15 10 35 60 85 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 TEMPERATURE C FREQUENCY MHz FREQUENCY MHz GAIN vs FREQUENCY GAIN vs FREQUENCY GAIN vs CONTROL VOLTAGE VI1 VQ1 20 g 15 5 20 15 3 39 V_1 3 0V 48 10 8 15 E 8 3 10
22. alun DESIGNATION POPULATED WITH AN INDUCTOR OR CAPACITOR DEPENDING ON THE VERSION Figure 2 Typical Operating Circuit Using Single Ended Voltage Mode DACs MAXIM 19 ZPFOCXVW 9rocxvW SrOcXVIW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers On Chip Reference Voltage An on chip 2 5V reference voltage is provided for single ended control mode Connect REFOUT to VI2 and VQ2 to provide a stable reference voltage The equivalent output resistance of the REFOUT pin is approximately 80Q REFOUT is capable of sourcing 1mA of current with 10mV drop in voltage Applications Information RF Single Ended Operation The RF input impedance is 50Q differential into the IC An external low loss 1 1 balun can be used for single ended operation The RF output impedance is 300 differential into the IC An external low loss 4 1 balun transforms this impedance down to 50Q single ended output Figures 1 and 2 Bias Resistor The bias resistor value 2809 was optimized during characterization at the factory This value should not be adjusted If the 280Q 1 resistor is not readily avail able substitute a standard 28002 5 resistor which may result in more current part to part variation Switching Speed The control inputs have a typical 3dB BW of 260MHz This BW provides the device with the ability to adjust gain phase at a very rapid rate The Switching Speed gra
23. d magnitude of each signal can then be adjusted using the voltage and or current control inputs Figure 1 shows a typical operating circuit when using both current and voltage mode DACs When using only one of the two leave the unused Q inputs open AVLAZCLAVI Exposed Pad Exposed pad on the bottom of the IC should be soldered to the ground plane for proper RF Ports The RF input and output ports require external matching for optimal performance See Figures 1 and 2 for appro priate component values The output ports require external biasing In Figures 1 and 2 the outputs are biased through the balun T2 The RF input ports can be driven differentially or single ended Figures 1 2 using a balun The matching values for the MAX2045 MAX2046 were set to be the same during characteriza tion An optimized set of values can be found in the MAX2045 MAX2046 MAX2047 Evaluation Kit data sheet I Q Inputs The control amplifiers convert a voltage current or voltage and current input to a predistorted voltage that controls the multipliers The I Q voltage mode inputs can be operated differentially Figure 1 or single ended Figure 2 A 2 5V reference is provided on chip for single ended operation 17 ZPFOCXVW 9rocxvW SrOc XVIMW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers RF INPUT o VOLTAGE MODE DAC co CUR
24. educe losses radiation and inductance For best performance route the ground pin traces directly to the exposed pad underneath the package This pad should be connected to the ground plane of the board by using multiple vias under the device to provide the best RF thermal conduction path Solder the exposed pad on the bottom of the device package to a PC board exposed pad The MAX2045 MAX2046 MAX2047 Evaluation Kit can be used as a reference for board layout Gerber files are available upon request at www maxim ic com Power Supply Bypassing Proper voltage supply bypassing is essential for high frequency circuit stability Bypass the Vcc pins with 10nF and 22pF 47pF for the MAX2047 capacitors Connect the high frequency capacitor as close to the device as possible Exposed Paddle RF Thermal Considerations The EP of the 32 lead thin QFN package provides a low thermal resistance path to the die It is important that the PC board on which the IC is mounted be designed to conduct heat from this contact In addition the EP provides a low inductance RF ground path for the device It is recommended that the EP be soldered to a ground plane on the PC board either directly or through an array of plated via holes Soldering the pad to ground is also critical for proper heat dissipation Use a solid ground plane wherever possible Chip Information TRANSISTOR COUNT 599 MAXIM High Gain Vector Multipliers Package Information
25. ge 0 to 4mA if using a current mode DAC and differential input voltage range O to 0 707V if using a voltage mode DAC If using a current mode DAC voltage mode Q inputs are left open If using a voltage mode DAC all current mode I Q inputs are left open Typical values are at Vcc 5V and Ta 25 C unless otherwise noted Notes 1 2 3 PARAMETER CURRENT MODE CONDITIONS Power Gain Note 4 WA IQ1 4mA II2 IQ2 OmA WA IQ1 1mA II2 IQ2 OmA Power Gain Range Gain Flatness Over Frequency Difference in gain between II1 IQ1 4mA II2 IQ2 OmA and IQ1 1mA II2 IQ2 OmA I1 IQ1 4mA II2 IQ2 OmA UMTS dB Tin 2140MHz 100MHz Phase Flatness Over Frequency Electrical delay removed II1 IQ1 4mA 112 IQ2 OMA Degrees MAX2046 ELECTRICAL CHARACTERISTICS Typical Operating Circuit as shown in Figure 1 Vcc 4 75V to 5 25V Ta 40 C to 85 C Rgias 2809 fin 1 9GHz input cur rent range 0 to 4mA if using a current mode DAC and differential input voltage range O to 0 707V if using a voltage mode DAC If using a current mode DAC voltage mode Q inputs are left open If using a voltage mode DAC all current mode I Q inputs are left open Typical values are at Vcc 5V and Ta 25 C unless otherwise noted Notes 1 2 3 PARAMETER CONDITIONS Frequency Range RF Input Return Loss RF Output Return Loss VOLTAGE MODE
26. in QFN EP 32 Thin QFN EP MAX2045ETJ T MAX2046ETJ T MAX2047ETJ T EP Exposed paddle MAKINI Features Multiple RF Frequency Bands of Operation 2040MHz to 2240MHz MAX2045 1740MHz to 2060MHz MAX2046 790MHz to 1005MHz MAX2047 0 2dB Gain Flatness 1 Phase Flatness 3dB Control Bandwidth 260MHz 15dBm Input IP3 15dB Gain Control Range Continuous 360 Phase Control Range 6 5dB Maximum Gain for Continuous Phase e 9 9 9 9 9 9 On Chip Reference for Single Ended Voltage Mode Operation 800mW Power Consumption 9 Space Saving 5mm x 5mm Thin QFN Package Single 5V supply Pin Configuration Block Diagram CONTROL 90 AMPLIFIER PHASE MAXIM SHIFTER MAX2045 MAX2046 MAX2047 VECTO CONTROL ULTIPL AMPLIFIER Q 2 5V REFERENCE Maxim Integrated Products 1 For pricing delivery and ordering information please contact Maxim Dallas Direct at 1 888 629 4642 or visit Maxim s website at www maxim ic com ZPFOCXVW 9rocxvW SrOcXVIW MAX2045 MAX2046 MAX2047 High Gain Vector Multipliers ABSOLUTE MAXIMUM RATINGS Veo OXON cd ee eae een ete 0 3V to 6V Continuous RF Input Power CW 15dBm VI1 V12 VQ1 VQ2 RFIN1 RFIN2 Continuous Power Dissipation TA 70 C REOUTT BEOUT2 4 eS 32 Pin Thin QFN derate 21 3mW C above 70 C 1 7W RFOUT1 RFOUT2 S
27. ink Current Operating Temperature Range sssri 40 C to 85 C REFOUT Source Current sss Junction Temperature asaaesaneran nenen nana e 150 C 11 12 1Q1 1Q2 isi eot te Rete te ae Storage Temperature Range ssssss 40 C to 150 C II1 112 IQ1 IQ2 Sink Current oo eect aana aana Lead Temperature soldering 10S iane aana ei 300 C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability DC ELECTRICAL CHARACTERISTICS Typical Operating Circuit as shown in Figure 1 Vcc 4 75V to 5 25V Ta 40 C to 85 C Rgias 280Q no RF inputs applied RF input and output ports are terminated with 50Q Typical values are at Vcc 5V and Ta 25 C unless otherwise noted PARAMETER SYMBOL CONDITIONS Supply Voltage Range 4 75 5 MAX2045 120 160 Operating Supply Current MAX2046 120 160 MAX2047 120 160 Differential Input Resistance Input resistance between VI1 and VI2 or VI1 to VI2 VQ1 to VQ2 VQ1 and VQ2 Common Mode Input Voltage VI VI2 VQ1 VQ2 Input Resistance II1 112 IQ1 IQ2 Reference Voltage VnEFOUT REFOUT un
28. loaded Single ended resistance to ground AC ELECTRICAL CHARACTERISTICS Typical Operating Circuit as shown in Figure 1 Vcc 4 75V to 5 25V TA 40 C to 85 C Rgias 2809 fin 2 14GHz MAX2045 fin 1 9GHz MAX2046 fin 915MHz MAX2047 input current range 0 to 4mA if using a current mode DAC and differential input voltage range O to 0 707V if using a voltage mode DAC If using a current mode DAC voltage mode 1 0 inputs are left open If using a voltage mode DAC all current mode Q inputs are left open Typical values are at Vcc 5V and TA 25 C unless otherwise noted Notes 1 2 3 PARAMETER CONDITIONS RF Differential Input Impedance RF Differential Output Impedance RF Differential Load Impedance Continuous Phase Range 2 AVLAZCLAVI High Gain Vector Multipliers MAX2045 ELECTRICAL CHARACTERISTICS Typical Operating Circuit as shown in Figure 1 Vcc 4 75V to 5 25V Ta 40 C to 85 C Reias 28002 fin 2 14GHz input cur rent range O to 4mA if using a current mode DAC and differential input voltage range O to 0 707V if using a voltage mode DAC If using a current mode DAC voltage mode Q inputs are left open If using a voltage mode DAC all current mode I Q inputs are left open Typical values are at Vcc 5V and Ta 25 C unless otherwise noted Notes 1 2 3 PARAMETER Frequency Range CONDITIONS RF Input Return Loss
29. on Note 2 All specifications reflect losses and delays of external components matching components baluns and PC board traces Output measurements taken at the RF OUTPUT of the Typical Operating Circuit Note 3 Radius is defined as VI VQ 5 VI denotes the difference between VI1 and VI2 VQ denotes the difference between VQ1 and VQ2 For differential operation VI1 VREF 0 5 x VI VI2 Vngr 0 5 x VI VQ1 VREF 0 5 x VQ VQ2 Vngr 0 5 x VQ For single ended operation VI1 VREF VI VI2 VREF VQ1 VREF VQ VQ2 VREF Note 4 When using the I Q current inputs maximum gain occurs when one differential input current is zero and the other corre sponding differential input is 5bmA Minimum gain occurs when both differential inputs are equal MAXIM 7 ZPFOCXVW 9rocxvW SrOcXVIW High Gain Vector Multipliers Typical Operating Characteristics MAX2045 Vcc 5V fin 2140MHz V 1 VI1 and VQ1 V_2 VI2 and VQ2 1 1 II1 and IQ1 1 2 II2 and IQ2 VI1 VQ1 3 2V VI2 VQ2 REFOUT Pin 15dBm per tone at 1MHz offset IIP3 and Ta 25 C unless otherwise noted REFOUT AND SUPPLY CURRENT MAX2045 MAX2046 MAX2047
30. phs in the Typical Operating Characteristics try to capture the control ability of the vector multipliers These measurements were done by first removing capacitors C4 C7 to reduce driving capacitance The test for gathering the curves shown uses a MAX9602 differential output comparator to drive VI1 VI2 VQ1 and VQ2 One output of the comparator is connected to VI1 VQ1 while the other is connected to VI2 VQ2 The input to the vector multiplier is driven by an RF source and the output is connected to a crystal detector The switching signal produces a waveform that results in a 0 7V differential input signal to the vector multiplier This signal switches the signal from quadrant 3 0 7V case through the origin maximum attenuation and into quadrant 1 0 7V case The before and after amplitude S21 stays about the same between the two quadrants but the phase changes by 180 20 As the differential control signal approaches zero the gain approaches its minimum value This appears as the null in the Typical Operating Characteristics The measurement results include rise time errors from the crystal detector specified by manufacturing to be approximately 8ns to 12ns the comparator approxi mately 500ps and the 500MHz BW oscilloscope used to measure the control and detector signals Layout Issues A properly designed PC board is an essential part of any RF microwave circuit Keep RF signal lines as short as possible to r
31. unless otherwise noted OUTPUT NOISE POWER OUTPUT NOISE POWER INPUT P1 dB COMPRESSION vs CONTROL VOLTAGE VI1 VQ1 vs CONTROL VOLTAGE VI1 VQ1 vs FREQUENCY 144 0 144 0 144 5 144 5 Vcc 4 75V MAX2046 toc36 5 9 0 3 E B 85 E i 145 0 145 0 E amp S 8 0 S 145 5 S 4145 5 amp 1460 Vec 5 25V 75 e z gs x S S S 147 0 5 T 4 d Lr z j 1475 E 60 2 o 148 0 Vec 5 0V 148 5 5 5 149 0 50 250 275 3 00 325 350 375 4 00 250 275 3 00 325 350 375 4 00 1700 1750 1800 1850 1900 1950 2000 2050 2100 CONTROL VOLTAGE V11 VQ1 V CONTROL VOLTAGE VI1 VQ1 V FREQUENCY MHz INPUT P1 dB COMPRESSION INPUT P1 dB COMPRESSION INPUT P1 dB COMPRESSION vs FREQUENCY vs CONTROL VOLTAGE VI1 VQ1 vs CONTROL VOLTAGE VI1 VQ1 9 0 3 S V 1 32V E E E E 8 0 m Er Ta 25 C A 85 C S 75 S s 70 x amp Lr 65 lt 6 0 Ta 40 C 55 5 0 1700 1750 1800 1850 1900 1950 2000 2050 2100 250 275 3 00 325 350 375 4 00
32. urrent control input This pin can only sink current It cannot source current inverting quadrature current control input This pin can only sink current It cannot source current Inverting quadrature current control input This pin can only sink current It cannot source current 2 5V Reference Output Integrated reference voltage provides a 2 5V output for single ended voltage REFOUT control applications For single ended operation connect REFOUT to the inverting voltage inputs VI2 VQ2 10 11 14 15 16 19 20 21 23 27 30 31 32 Ground RFOUT1 Noninverting RF Output RFOUT2 Inverting RF Output Voc Supply Voltage RBIAS 28 RFIN1 29 RFIN2 Inverting RF Input Bias Setting Resistor Connect a 28002 1 resistor from this pin to ground to set the bias current for the IC Noninverting RF Input Exposed Pad heat dissipation and RF grounding Detailed Description The MAX2045 MAX2046 MAX2047 provide vector adjustment through the differential I Q amplifiers Each part is optimized for separate frequency ranges MAX2045 for f n 2040MHz to 2240MHz MAX2046 for fin 1740MHz to 2060MHz and MAX2047 for fin 790MHz to 1005MHz All three devices can be inter faced using current and or voltage mode DACs The MAX2045 MAX2046 MAX2047 accept differential RF inputs which are internally phase shifted 90 degrees to produce differential I Q signals The phase an
33. vs FREQUENCY S21 PHASE vs FREQUENCY 21 PHASE vs FREQUENCY z 60 a 60 e V 1 265V 8 V_1 3 2V E V 1 2 65V s ONE ELECTRICAL DELAY E ONE ELECTRICAL DELAY 5o ONE ELECTRICAL DELAY E REMOVED AT 5V E 50 FREMOVED AT 25 C 2 REMOVED AT 25 C E ee P gj M0 ta t 140 hrel 5 E Ta 40 C 5 180 2 130 e e 42596 D 120 a a a 20 10 10 00 00 90 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 FREQUENCY MHz FREQUENCY MHz FREQUENCY MHz GROUP DELAY vs FREQUENCY SWITCHING SPEED 27 E V_1 2 55V TO 3 5V 3 2 SEE SWITCHING SPEED SECTION IN THE 3 26 E APPLICATIONS INFORMATION E 25 S 24 gt E E a j 23 ga unt gi 22 AS IN GAIN 21 ORIGIN 7 20 13 MAX GAIN 03 MAX GAIN Q1 18 S 17 X 16 700 750 800 850 900 950 1000 1050 1100 SWITCHING SPEED 1ns div FREQUENCY MHz 16 AVLAZCLAVI High Gain Vector Multipliers Pin Description FUNCTION inverting in phase voltage control input Requires common mode input voltage 2 5V typ Inverting in phase voltage control input Requires common mode input voltage 2 5V typ Noninverting quadrature voltage control input Requires common mode input voltage 2 5V typ Inverting quadrature voltage control input Requires common mode input voltage 2 5V typ Noninverting in phase current control input This pin can only sink current It cannot source current Inverting in phase c

Download Pdf Manuals

image

Related Search

MAXIM MAX2045/MAX2046/MAX2047 Manual

Related Contents

  Tektronix VM series video Measuring instrument QuickStart Guideuser manual  Leprecon ULD-360DMX ULD-360DMX-HP USER S MANUAL                

Copyright © All rights reserved.
DMCA: DMCA_mwitty#outlook.com.